mathlib3 documentation

monlib / linear_algebra.my_matrix.pos_def_rpow

The real-power of a positive definite matrix #

This file defines the real-power of a positive definite matrix. In particular, given a positive definite matrix x and real number r, we get pos_def.rpow as the matrix eigenvector_matrix * (coe ∘ diagonal (eigenvalues ^ r)) * eigenvector_matrix⁻¹.

It also proves some basic obvious properties of pos_def.rpow such as pos_def.rpow_mul_rpow and pos_def.rpow_zero.

noncomputable def matrix.pos_def.rpow {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {Q : matrix n n 𝕜} (hQ : Q.pos_def) (r : ) :
matrix n n 𝕜
Equations
theorem matrix.pos_def.rpow_mul_rpow {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] (r₁ r₂ : ) {Q : matrix n n 𝕜} (hQ : Q.pos_def) :
(hQ.rpow r₁).mul (hQ.rpow r₂) = hQ.rpow (r₁ + r₂)
theorem matrix.pos_def.rpow_one_eq_self {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {Q : matrix n n 𝕜} (hQ : Q.pos_def) :
hQ.rpow 1 = Q
theorem matrix.pos_def.rpow_neg_one_eq_inv_self {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {Q : matrix n n 𝕜} (hQ : Q.pos_def) :
hQ.rpow (-1) = Q⁻¹
theorem matrix.pos_def.rpow_zero {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {Q : matrix n n 𝕜} (hQ : Q.pos_def) :
hQ.rpow 0 = 1
theorem matrix.pos_def.rpow.is_pos_def {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {Q : matrix n n 𝕜} (hQ : Q.pos_def) (r : ) :
(hQ.rpow r).pos_def
theorem matrix.pos_def.rpow.is_hermitian {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {Q : matrix n n 𝕜} (hQ : Q.pos_def) (r : ) :
theorem matrix.pos_def.inv {𝕜 : Type u_1} {n : Type u_2} [fintype n] [is_R_or_C 𝕜] {Q : matrix n n 𝕜} [decidable_eq 𝕜] [decidable_eq n] (hQ : Q.pos_def) :
theorem matrix.pos_def.rpow_ne_zero {n : Type u_1} [fintype n] [decidable_eq n] [nonempty n] {Q : matrix n n } (hQ : Q.pos_def) {r : } :
hQ.rpow r 0