Some stuff on ites #
Some lemmas about ite
and coe
for star
and tensor_product
.
@[simp]
theorem
star_ite
{α : Type u_1}
[has_involutive_star α]
(P : Prop)
[decidable P]
(a b : α) :
has_star.star (ite P a b) = ite P (has_star.star a) (has_star.star b)
theorem
tensor_product.ite_map
{R : Type u_1}
{M₁ : Type u_2}
{M₂ : Type u_3}
{M₃ : Type u_4}
{M₄ : Type u_5}
[comm_semiring R]
[add_comm_monoid M₁]
[add_comm_monoid M₂]
[add_comm_monoid M₃]
[add_comm_monoid M₄]
[module R M₁]
[module R M₂]
[module R M₃]
[module R M₄]
(f₁ f₂ : M₁ →ₗ[R] M₂)
(g : M₃ →ₗ[R] M₄)
(P : Prop)
[decidable P] :
tensor_product.map (ite P f₁ f₂) g = ite P (tensor_product.map f₁ g) (tensor_product.map f₂ g)