mathlib3 documentation

monlib / preq.is_R_or_C_le

Strictly ordered field structure on π•œ #

This file defines the following structures on π•œ.

theorem is_R_or_C.lt_def {π•œ : Type u_1} [is_R_or_C π•œ] {z w : π•œ} :
theorem is_R_or_C.nonneg_def {π•œ : Type u_1} [is_R_or_C π•œ] {x : π•œ} :
theorem is_R_or_C.pos_def {π•œ : Type u_1} [is_R_or_C π•œ] {x : π•œ} :
theorem is_R_or_C.nonpos_def {π•œ : Type u_1} [is_R_or_C π•œ] {x : π•œ} :
theorem is_R_or_C.neg_def {π•œ : Type u_1} [is_R_or_C π•œ] {x : π•œ} :
theorem is_R_or_C.nonneg_def' {π•œ : Type u_1} [is_R_or_C π•œ] {x : π•œ} :
@[simp, norm_cast]
theorem is_R_or_C.real_le_real {π•œ : Type u_1} [is_R_or_C π•œ] {x y : ℝ} :
@[simp, norm_cast]
theorem is_R_or_C.real_lt_real {π•œ : Type u_1} [is_R_or_C π•œ] {x y : ℝ} :
@[simp, norm_cast]
theorem is_R_or_C.zero_le_real {π•œ : Type u_1} [is_R_or_C π•œ] {x : ℝ} :
@[simp, norm_cast]
theorem is_R_or_C.zero_lt_real {π•œ : Type u_1} [is_R_or_C π•œ] {x : ℝ} :
0 < ↑x ↔ 0 < x
theorem is_R_or_C.not_le_zero_iff {π•œ : Type u_1} [is_R_or_C π•œ] {z : π•œ} :
theorem is_R_or_C.not_lt_zero_iff {π•œ : Type u_1} [is_R_or_C π•œ] {z : π•œ} :
theorem is_R_or_C.eq_re_of_real_le {π•œ : Type u_1} [is_R_or_C π•œ] {r : ℝ} {z : π•œ} (hz : ↑r ≀ z) :
@[protected]
def is_R_or_C.strict_ordered_comm_ring {π•œ : Type u_1} [is_R_or_C π•œ] :

With z ≀ w iff w - z is real and nonnegative, π•œ is a strictly ordered ring.

Equations
@[protected]
def is_R_or_C.star_ordered_ring {π•œ : Type u_1} [is_R_or_C π•œ] :

With z ≀ w iff w - z is real and nonnegative, π•œ is a star ordered ring. (That is, a star ring in which the nonnegative elements are those of the form star z * z.)

Equations