mathlib3 documentation

monlib / linear_algebra.my_ips.symm

some obvious lemmas on self-adjoint operators #

This file provides the polarization identity for self adjoint continuous linear maps over is_R_or_C.

theorem continuous_linear_map.is_self_adjoint.inner_map_self_eq_zero {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] [complete_space E] {T : E β†’L[π•œ] E} (hT : is_self_adjoint T) :
(βˆ€ (x : E), has_inner.inner (⇑T x) x = 0) ↔ T = 0

Given a self-adjoint continuous linear operator $T$ on $E$, we get $\langle T x, x \rangle = 0$ for any $x\in E$ if and only if $T=0$.

The polarization identity for self-adjoint operators.