noncomputable
def
of_norm.inner_def
{π : Type u_1}
{X : Type u_2}
[is_R_or_C π]
[normed_add_comm_group X]
[normed_space π X]
(x y : X) :
π
theorem
of_norm.re_inner_def
{π : Type u_1}
{X : Type u_2}
[is_R_or_C π]
[normed_add_comm_group X]
[normed_space π X]
(x y : X) :
theorem
of_norm.inner_def_zero_left
{π : Type u_1}
{X : Type u_2}
[is_R_or_C π]
[normed_add_comm_group X]
[normed_space π X]
(x : X) :
of_norm.inner_def 0 x = 0
theorem
of_norm.inner_def_I_smul_left
{π : Type u_1}
{X : Type u_2}
[is_R_or_C π]
[normed_add_comm_group X]
[normed_space π X]
(x y : X) :
of_norm.inner_def (is_R_or_C.I β’ x) y = -is_R_or_C.I * of_norm.inner_def x y
theorem
of_norm.im_inner_def_aux
{π : Type u_1}
{X : Type u_2}
[is_R_or_C π]
[normed_add_comm_group X]
[normed_space π X]
(x y : X) :
βis_R_or_C.im (of_norm.inner_def x y) = βis_R_or_C.re (of_norm.inner_def (is_R_or_C.I β’ x) y)
theorem
of_norm.re_inner_def_symm
{π : Type u_1}
{X : Type u_2}
[is_R_or_C π]
[normed_add_comm_group X]
[normed_space π X]
(x y : X) :
theorem
of_norm.im_inner_def_symm
{π : Type u_1}
{X : Type u_2}
[is_R_or_C π]
[normed_add_comm_group X]
[normed_space π X]
(x y : X) :
theorem
of_norm.inner_def_conj
{π : Type u_1}
{X : Type u_2}
[is_R_or_C π]
[normed_add_comm_group X]
[normed_space π X]
(x y : X) :
β(star_ring_end π) (of_norm.inner_def x y) = of_norm.inner_def y x
In this section we show the addition property and scalar-multiplication property by mimicking (and copying) the Mathlib4
code on InnerProductSpace.ofNorm
.
theorem
of_norm.inner_def_add_left
{π : Type u_1}
{X : Type u_2}
[is_R_or_C π]
[normed_add_comm_group X]
[normed_space π X]
(h : β (x y : X), βx + yβ * βx + yβ + βx - yβ * βx - yβ = 2 * (βxβ * βxβ + βyβ * βyβ))
(x y z : X) :
of_norm.inner_def (x + y) z = of_norm.inner_def x z + of_norm.inner_def y z
theorem
of_norm.inner_def_nsmul_left
{π : Type u_1}
{X : Type u_2}
[is_R_or_C π]
[normed_add_comm_group X]
[normed_space π X]
(h : β (x y : X), βx + yβ * βx + yβ + βx - yβ * βx - yβ = 2 * (βxβ * βxβ + βyβ * βyβ))
(n : β)
(x y : X) :
of_norm.inner_def (βn β’ x) y = βn * of_norm.inner_def x y
theorem
of_norm.inner_def_neg_one_smul_left
{π : Type u_1}
{X : Type u_2}
[is_R_or_C π]
[normed_add_comm_group X]
[normed_space π X]
(x y : X) :
of_norm.inner_def (β-1 β’ x) y = -of_norm.inner_def x y
theorem
continuous.inner_def
{π : Type u_1}
{X : Type u_2}
[is_R_or_C π]
[normed_add_comm_group X]
[normed_space π X]
{f g : β β X}
(hf : continuous f)
(hg : continuous g) :
continuous (Ξ» (x : β), of_norm.inner_def (f x) (g x))
theorem
of_norm.inner_def_smul_left
{π : Type u_1}
{X : Type u_2}
[is_R_or_C π]
[normed_add_comm_group X]
[normed_space π X]
(h : β (x y : X), βx + yβ * βx + yβ + βx - yβ * βx - yβ = 2 * (βxβ * βxβ + βyβ * βyβ))
(r : π)
(x y : X) :
of_norm.inner_def (r β’ x) y = β(star_ring_end π) r * of_norm.inner_def x y
End of section from Mathlib4
.
noncomputable
def
of_norm.inner_product_spacce.of_norm
{π : Type u_1}
{X : Type u_2}
[is_R_or_C π]
[normed_add_comm_group X]
[normed_space π X]
(h : β (x y : X), βx + yβ * βx + yβ + βx - yβ * βx - yβ = 2 * (βxβ * βxβ + βyβ * βyβ)) :
inner_product_space π X
Equations
- of_norm.inner_product_spacce.of_norm h = {to_normed_space := _inst_3, to_has_inner := {inner := Ξ» (x y : X), of_norm.inner_def x y}, norm_sq_eq_inner := _, conj_symm := _, add_left := _, smul_left := _}
def
is_continuous_linear_map
(π : Type u_1)
[normed_field π]
{E : Type u_2}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_3}
[normed_add_comm_group F]
[normed_space π F]
(f : E β F) :
Prop
Equations
- is_continuous_linear_map π f = (is_linear_map π f β§ continuous f)
def
is_continuous_linear_map.mk'
{π : Type u_1}
[normed_field π]
{E : Type u_2}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_3}
[normed_add_comm_group F]
[normed_space π F]
{f : E β F}
(h : is_continuous_linear_map π f) :
Equations
- h.mk' = {to_linear_map := is_linear_map.mk' f _, cont := _}
theorem
is_continuous_linear_map.coe_mk'
{π : Type u_1}
[normed_field π]
{E : Type u_2}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_3}
[normed_add_comm_group F]
[normed_space π F]
{f : E β F}
(h : is_continuous_linear_map π f) :
theorem
is_bounded_linear_map_iff_is_continuous_linear_map
{π : Type u_1}
{E : Type u_2}
[nontrivially_normed_field π]
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_3}
[normed_add_comm_group F]
[normed_space π F]
(f : E β F) :
is_bounded_linear_map π f β is_continuous_linear_map π f
theorem
is_bounded_linear_map.def
{π : Type u_1}
{E : Type u_2}
[nontrivially_normed_field π]
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_3}
[normed_add_comm_group F]
[normed_space π F]
{f : E β F} :
is_bounded_linear_map π f β is_linear_map π f β§ with_bound f
theorem
linear_map.with_bound_iff_is_continuous
{π : Type u_1}
{E : Type u_2}
[nontrivially_normed_field π]
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_3}
[normed_add_comm_group F]
[normed_space π F]
{f : E ββ[π] F} :
theorem
linear_map.ker_coe_def
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[semiring R]
[add_comm_monoid E]
[add_comm_monoid F]
[module R E]
[module R F]
{f : E ββ[R] F} :
β(linear_map.ker f) = {x : E | βf x = 0}
theorem
exists_dual_vector_of_ne
{π : Type u_1}
[is_R_or_C π]
{X : Type u_2}
[normed_add_comm_group X]
[normed_space π X]
{x y : X}
(h : x β y) :
theorem
is_linear_map_zero
(R : Type u_1)
{E : Type u_2}
{F : Type u_3}
[comm_semiring R]
[add_comm_monoid E]
[module R E]
[add_comm_monoid F]
[module R F] :
is_linear_map R 0
theorem
is_continuous_linear_map_zero
{π : Type u_1}
{E : Type u_2}
[normed_field π]
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_3}
[normed_add_comm_group F]
[normed_space π F] :
is_continuous_linear_map π 0
theorem
is_continuous_linear_map.of_inner_symmetric_fun
{π : Type u_1}
[is_R_or_C π]
{X : Type u_2}
[normed_add_comm_group X]
[inner_product_space π X]
[complete_space X]
{f : X β X}
(h : β (a b : X), has_inner.inner (f a) b = has_inner.inner a (f b)) :
is_continuous_linear_map π f
structure
is_bilinear_map
(π : Type u_3)
[normed_field π]
{E : Type u_4}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_5}
[normed_add_comm_group F]
[normed_space π F]
{G : Type u_6}
[normed_add_comm_group G]
[normed_space π G]
(f : E Γ F β G) :
Prop
- add_left : β (xβ xβ : E) (y : F), f (xβ + xβ, y) = f (xβ, y) + f (xβ, y)
- smul_left : β (c : π) (x : E) (y : F), f (c β’ x, y) = c β’ f (x, y)
- add_right : β (x : E) (yβ yβ : F), f (x, yβ + yβ) = f (x, yβ) + f (x, yβ)
- smul_right : β (c : π) (x : E) (y : F), f (x, c β’ y) = c β’ f (x, y)
def
is_left_linear_map
(π : Type u_1)
[normed_field π]
{E : Type u_2}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_3}
{G : Type u_4}
[normed_add_comm_group G]
[normed_space π G]
(f : E Γ F β G) :
Prop
Equations
- is_left_linear_map π f = β (b : F), is_linear_map π (Ξ» (a : E), f (a, b))
theorem
is_left_linear_map_iff
{π : Type u_1}
[normed_field π]
{E : Type u_2}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_3}
{G : Type u_4}
[normed_add_comm_group G]
[normed_space π G]
{f : E Γ F β G} :
is_left_linear_map π f β β (b : F), is_linear_map π (Ξ» (a : E), f (a, b))
def
is_right_linear_map
(π : Type u_1)
[normed_field π]
{E : Type u_2}
{F : Type u_3}
[normed_add_comm_group F]
[normed_space π F]
{G : Type u_4}
[normed_add_comm_group G]
[normed_space π G]
(f : E Γ F β G) :
Prop
Equations
- is_right_linear_map π f = β (a : E), is_linear_map π (Ξ» (b : F), f (a, b))
theorem
is_right_linear_map_iff
{π : Type u_1}
[normed_field π]
{E : Type u_2}
{F : Type u_3}
[normed_add_comm_group F]
[normed_space π F]
{G : Type u_4}
[normed_add_comm_group G]
[normed_space π G]
{f : E Γ F β G} :
is_right_linear_map π f β β (a : E), is_linear_map π (Ξ» (b : F), f (a, b))
theorem
is_bilinear_map_iff_is_linear_map_left_right
{π : Type u_1}
[normed_field π]
{E : Type u_2}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_3}
[normed_add_comm_group F]
[normed_space π F]
{G : Type u_4}
[normed_add_comm_group G]
[normed_space π G]
{f : E Γ F β G} :
is_bilinear_map π f β is_left_linear_map π f β§ is_right_linear_map π f
def
is_bilinear_map.to_lm_lm
{π : Type u_1}
[normed_field π]
{E : Type u_2}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_3}
[normed_add_comm_group F]
[normed_space π F]
{G : Type u_4}
[normed_add_comm_group G]
[normed_space π G]
{f : E Γ F β G}
(hf : is_bilinear_map π f) :
def
is_lm_left_is_clm_right.to_lm_clm
{π : Type u_1}
[normed_field π]
{E : Type u_2}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_3}
[normed_add_comm_group F]
[normed_space π F]
{G : Type u_4}
[normed_add_comm_group G]
[normed_space π G]
{f : E Γ F β G}
(hfβ : β (y : F), is_linear_map π (Ξ» (a : E), f (a, y)))
(hfβ : β (x : E), is_continuous_linear_map π (Ξ» (a : F), f (x, a))) :
theorem
is_bilinear_map.zero_left
{π : Type u_1}
[normed_field π]
{E : Type u_2}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_3}
[normed_add_comm_group F]
[normed_space π F]
{G : Type u_4}
[normed_add_comm_group G]
[normed_space π G]
{f : E Γ F β G}
(h : is_bilinear_map π f)
(y : F) :
f (0, y) = 0
theorem
is_bilinear_map.zero_right
{π : Type u_1}
[normed_field π]
{E : Type u_2}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_3}
[normed_add_comm_group F]
[normed_space π F]
{G : Type u_4}
[normed_add_comm_group G]
[normed_space π G]
{f : E Γ F β G}
(h : is_bilinear_map π f)
(x : E) :
f (x, 0) = 0
theorem
is_bilinear_map.eq_zero_add_self
{π : Type u_1}
[normed_field π]
{E : Type u_2}
[normed_add_comm_group E]
[normed_space π E]
{F : Type u_3}
[normed_add_comm_group F]
[normed_space π F]
{G : Type u_4}
[normed_add_comm_group G]
[normed_space π G]
{f : E Γ F β G}
(h : is_bilinear_map π f)
(xy : E Γ F) :
theorem
is_continuous_linear_map.to_is_lm
{π : Type u_1}
{X : Type u_2}
{Y : Type u_3}
[normed_field π]
[normed_add_comm_group X]
[normed_add_comm_group Y]
[normed_space π X]
[normed_space π Y]
{Ξ² : X β Y}
(hf : is_continuous_linear_map π Ξ²) :
is_linear_map π Ξ²
theorem
continuous_linear_map.op_norm_le_iff
{π : Type u_1}
{X : Type u_2}
{Y : Type u_3}
[nontrivially_normed_field π]
[normed_add_comm_group X]
[normed_add_comm_group Y]
[normed_space π X]
[normed_space π Y]
(f : X βL[π] Y)
{r : β}
(hr : 0 β€ r) :