mathlib3 documentation

monlib / linear_algebra.of_norm

theorem cs_aux {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] {x y : E} (hy : y β‰  0) :
noncomputable def of_norm.inner_def {π•œ : Type u_1} {X : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group X] [normed_space π•œ X] (x y : X) :
π•œ
Equations
theorem of_norm.re_inner_def {π•œ : Type u_1} {X : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group X] [normed_space π•œ X] (x y : X) :
theorem of_norm.im_eq_re_neg_I {π•œ : Type u_1} [is_R_or_C π•œ] (x : π•œ) :
theorem of_norm.inner_def_zero_left {π•œ : Type u_1} {X : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group X] [normed_space π•œ X] (x : X) :
theorem of_norm.inner_def_I_smul_left {π•œ : Type u_1} {X : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group X] [normed_space π•œ X] (x y : X) :
theorem of_norm.inner_def_conj {π•œ : Type u_1} {X : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group X] [normed_space π•œ X] (x y : X) :

In this section we show the addition property and scalar-multiplication property by mimicking (and copying) the Mathlib4 code on InnerProductSpace.ofNorm.

theorem of_norm.inner_def_neg_one_smul_left {π•œ : Type u_1} {X : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group X] [normed_space π•œ X] (x y : X) :
theorem continuous.inner_def {π•œ : Type u_1} {X : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group X] [normed_space π•œ X] {f g : ℝ β†’ X} (hf : continuous f) (hg : continuous g) :
continuous (Ξ» (x : ℝ), of_norm.inner_def (f x) (g x))
theorem of_norm.inner_def_smul_left {π•œ : Type u_1} {X : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group X] [normed_space π•œ X] (h : βˆ€ (x y : X), β€–x + yβ€– * β€–x + yβ€– + β€–x - yβ€– * β€–x - yβ€– = 2 * (β€–xβ€– * β€–xβ€– + β€–yβ€– * β€–yβ€–)) (r : π•œ) (x y : X) :

End of section from Mathlib4.

noncomputable def of_norm.inner_product_spacce.of_norm {π•œ : Type u_1} {X : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group X] [normed_space π•œ X] (h : βˆ€ (x y : X), β€–x + yβ€– * β€–x + yβ€– + β€–x - yβ€– * β€–x - yβ€– = 2 * (β€–xβ€– * β€–xβ€– + β€–yβ€– * β€–yβ€–)) :
Equations
def is_continuous_linear_map (π•œ : Type u_1) [normed_field π•œ] {E : Type u_2} [normed_add_comm_group E] [normed_space π•œ E] {F : Type u_3} [normed_add_comm_group F] [normed_space π•œ F] (f : E β†’ F) :
Prop
Equations
def is_continuous_linear_map.mk' {π•œ : Type u_1} [normed_field π•œ] {E : Type u_2} [normed_add_comm_group E] [normed_space π•œ E] {F : Type u_3} [normed_add_comm_group F] [normed_space π•œ F] {f : E β†’ F} (h : is_continuous_linear_map π•œ f) :
E β†’L[π•œ] F
Equations
theorem is_continuous_linear_map.coe_mk' {π•œ : Type u_1} [normed_field π•œ] {E : Type u_2} [normed_add_comm_group E] [normed_space π•œ E] {F : Type u_3} [normed_add_comm_group F] [normed_space π•œ F] {f : E β†’ F} (h : is_continuous_linear_map π•œ f) :
f = ⇑(h.mk')
def with_bound {E : Type u_1} [normed_add_comm_group E] {F : Type u_2} [normed_add_comm_group F] (f : E β†’ F) :
Prop
Equations
theorem is_bounded_linear_map.def {π•œ : Type u_1} {E : Type u_2} [nontrivially_normed_field π•œ] [normed_add_comm_group E] [normed_space π•œ E] {F : Type u_3} [normed_add_comm_group F] [normed_space π•œ F] {f : E β†’ F} :
theorem linear_map.ker_coe_def {R : Type u_1} {E : Type u_2} {F : Type u_3} [semiring R] [add_comm_monoid E] [add_comm_monoid F] [module R E] [module R F] {f : E β†’β‚—[R] F} :
↑(linear_map.ker f) = {x : E | ⇑f x = 0}
theorem exists_dual_vector_of_ne {π•œ : Type u_1} [is_R_or_C π•œ] {X : Type u_2} [normed_add_comm_group X] [normed_space π•œ X] {x y : X} (h : x β‰  y) :
theorem is_linear_map_zero (R : Type u_1) {E : Type u_2} {F : Type u_3} [comm_semiring R] [add_comm_monoid E] [module R E] [add_comm_monoid F] [module R F] :
theorem is_continuous_linear_map_zero {π•œ : Type u_1} {E : Type u_2} [normed_field π•œ] [normed_add_comm_group E] [normed_space π•œ E] {F : Type u_3} [normed_add_comm_group F] [normed_space π•œ F] :
theorem is_continuous_linear_map.of_inner_symmetric_fun {π•œ : Type u_1} [is_R_or_C π•œ] {X : Type u_2} [normed_add_comm_group X] [inner_product_space π•œ X] [complete_space X] {f : X β†’ X} (h : βˆ€ (a b : X), has_inner.inner (f a) b = has_inner.inner a (f b)) :
structure is_bilinear_map (π•œ : Type u_3) [normed_field π•œ] {E : Type u_4} [normed_add_comm_group E] [normed_space π•œ E] {F : Type u_5} [normed_add_comm_group F] [normed_space π•œ F] {G : Type u_6} [normed_add_comm_group G] [normed_space π•œ G] (f : E Γ— F β†’ G) :
Prop
  • add_left : βˆ€ (x₁ xβ‚‚ : E) (y : F), f (x₁ + xβ‚‚, y) = f (x₁, y) + f (xβ‚‚, y)
  • smul_left : βˆ€ (c : π•œ) (x : E) (y : F), f (c β€’ x, y) = c β€’ f (x, y)
  • add_right : βˆ€ (x : E) (y₁ yβ‚‚ : F), f (x, y₁ + yβ‚‚) = f (x, y₁) + f (x, yβ‚‚)
  • smul_right : βˆ€ (c : π•œ) (x : E) (y : F), f (x, c β€’ y) = c β€’ f (x, y)
def is_left_linear_map (π•œ : Type u_1) [normed_field π•œ] {E : Type u_2} [normed_add_comm_group E] [normed_space π•œ E] {F : Type u_3} {G : Type u_4} [normed_add_comm_group G] [normed_space π•œ G] (f : E Γ— F β†’ G) :
Prop
Equations
theorem is_left_linear_map_iff {π•œ : Type u_1} [normed_field π•œ] {E : Type u_2} [normed_add_comm_group E] [normed_space π•œ E] {F : Type u_3} {G : Type u_4} [normed_add_comm_group G] [normed_space π•œ G] {f : E Γ— F β†’ G} :
is_left_linear_map π•œ f ↔ βˆ€ (b : F), is_linear_map π•œ (Ξ» (a : E), f (a, b))
def is_right_linear_map (π•œ : Type u_1) [normed_field π•œ] {E : Type u_2} {F : Type u_3} [normed_add_comm_group F] [normed_space π•œ F] {G : Type u_4} [normed_add_comm_group G] [normed_space π•œ G] (f : E Γ— F β†’ G) :
Prop
Equations
theorem is_right_linear_map_iff {π•œ : Type u_1} [normed_field π•œ] {E : Type u_2} {F : Type u_3} [normed_add_comm_group F] [normed_space π•œ F] {G : Type u_4} [normed_add_comm_group G] [normed_space π•œ G] {f : E Γ— F β†’ G} :
is_right_linear_map π•œ f ↔ βˆ€ (a : E), is_linear_map π•œ (Ξ» (b : F), f (a, b))
theorem is_bilinear_map_iff_is_linear_map_left_right {π•œ : Type u_1} [normed_field π•œ] {E : Type u_2} [normed_add_comm_group E] [normed_space π•œ E] {F : Type u_3} [normed_add_comm_group F] [normed_space π•œ F] {G : Type u_4} [normed_add_comm_group G] [normed_space π•œ G] {f : E Γ— F β†’ G} :
def is_bilinear_map.to_lm_lm {π•œ : Type u_1} [normed_field π•œ] {E : Type u_2} [normed_add_comm_group E] [normed_space π•œ E] {F : Type u_3} [normed_add_comm_group F] [normed_space π•œ F] {G : Type u_4} [normed_add_comm_group G] [normed_space π•œ G] {f : E Γ— F β†’ G} (hf : is_bilinear_map π•œ f) :
E β†’β‚—[π•œ] F β†’β‚—[π•œ] G
Equations
def is_lm_left_is_clm_right.to_lm_clm {π•œ : Type u_1} [normed_field π•œ] {E : Type u_2} [normed_add_comm_group E] [normed_space π•œ E] {F : Type u_3} [normed_add_comm_group F] [normed_space π•œ F] {G : Type u_4} [normed_add_comm_group G] [normed_space π•œ G] {f : E Γ— F β†’ G} (hf₁ : βˆ€ (y : F), is_linear_map π•œ (Ξ» (a : E), f (a, y))) (hfβ‚‚ : βˆ€ (x : E), is_continuous_linear_map π•œ (Ξ» (a : F), f (x, a))) :
E β†’β‚—[π•œ] F β†’L[π•œ] G
Equations
theorem is_bilinear_map.zero_left {π•œ : Type u_1} [normed_field π•œ] {E : Type u_2} [normed_add_comm_group E] [normed_space π•œ E] {F : Type u_3} [normed_add_comm_group F] [normed_space π•œ F] {G : Type u_4} [normed_add_comm_group G] [normed_space π•œ G] {f : E Γ— F β†’ G} (h : is_bilinear_map π•œ f) (y : F) :
f (0, y) = 0
theorem is_bilinear_map.zero_right {π•œ : Type u_1} [normed_field π•œ] {E : Type u_2} [normed_add_comm_group E] [normed_space π•œ E] {F : Type u_3} [normed_add_comm_group F] [normed_space π•œ F] {G : Type u_4} [normed_add_comm_group G] [normed_space π•œ G] {f : E Γ— F β†’ G} (h : is_bilinear_map π•œ f) (x : E) :
f (x, 0) = 0
theorem is_bilinear_map.eq_zero_add_self {π•œ : Type u_1} [normed_field π•œ] {E : Type u_2} [normed_add_comm_group E] [normed_space π•œ E] {F : Type u_3} [normed_add_comm_group F] [normed_space π•œ F] {G : Type u_4} [normed_add_comm_group G] [normed_space π•œ G] {f : E Γ— F β†’ G} (h : is_bilinear_map π•œ f) (xy : E Γ— F) :
f xy = f (xy.fst, 0) + f xy
theorem is_continuous_linear_map.to_is_lm {π•œ : Type u_1} {X : Type u_2} {Y : Type u_3} [normed_field π•œ] [normed_add_comm_group X] [normed_add_comm_group Y] [normed_space π•œ X] [normed_space π•œ Y] {Ξ² : X β†’ Y} (hf : is_continuous_linear_map π•œ Ξ²) :
is_linear_map π•œ Ξ²
theorem continuous_linear_map.op_norm_le_iff {π•œ : Type u_1} {X : Type u_2} {Y : Type u_3} [nontrivially_normed_field π•œ] [normed_add_comm_group X] [normed_add_comm_group Y] [normed_space π•œ X] [normed_space π•œ Y] (f : X β†’L[π•œ] Y) {r : ℝ} (hr : 0 ≀ r) :