mathlib3 documentation

monlib / linear_algebra.tensor_finite

tensor_finite #

This file defines the star operation on a tensor product of finite-dimensional star-modules $E,F$, i.e., ${(x \otimes y)}^*=x^* \otimes y^*$ for $x\in{E}$ and $x\in{F}$.

@[protected, instance]
noncomputable def tensor_product.has_star {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [field 𝕜] [add_comm_group E] [add_comm_group F] [star_add_monoid E] [star_add_monoid F] [module 𝕜 E] [module 𝕜 F] [star_ring 𝕜] [finite_dimensional 𝕜 E] [finite_dimensional 𝕜 F] :
Equations
@[simp]
theorem tensor_product.star_tmul {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [field 𝕜] [add_comm_group E] [add_comm_group F] [star_add_monoid E] [star_add_monoid F] [module 𝕜 E] [module 𝕜 F] [star_ring 𝕜] [finite_dimensional 𝕜 E] [finite_dimensional 𝕜 F] [star_module 𝕜 E] [star_module 𝕜 F] (x : E) (y : F) :
theorem tensor_product.star_add {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [field 𝕜] [add_comm_group E] [add_comm_group F] [star_add_monoid E] [star_add_monoid F] [module 𝕜 E] [module 𝕜 F] [star_ring 𝕜] [finite_dimensional 𝕜 E] [finite_dimensional 𝕜 F] (x y : tensor_product 𝕜 E F) :
@[instance]
noncomputable def tensor_product.has_involutive_star {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [field 𝕜] [add_comm_group E] [add_comm_group F] [star_add_monoid E] [star_add_monoid F] [module 𝕜 E] [module 𝕜 F] [star_ring 𝕜] [finite_dimensional 𝕜 E] [finite_dimensional 𝕜 F] [star_module 𝕜 E] [star_module 𝕜 F] :
Equations
@[instance]
noncomputable def tensor_product.star_add_monoid {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [field 𝕜] [add_comm_group E] [add_comm_group F] [star_add_monoid E] [star_add_monoid F] [module 𝕜 E] [module 𝕜 F] [star_ring 𝕜] [finite_dimensional 𝕜 E] [finite_dimensional 𝕜 F] [star_module 𝕜 E] [star_module 𝕜 F] :
Equations
@[instance]
def tensor_product.star_module {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [field 𝕜] [add_comm_group E] [add_comm_group F] [star_add_monoid E] [star_add_monoid F] [module 𝕜 E] [module 𝕜 F] [star_ring 𝕜] [finite_dimensional 𝕜 E] [finite_dimensional 𝕜 F] :
star_module 𝕜 (tensor_product 𝕜 E F)
theorem tensor_product.map_real {𝕜 : Type u_1} [field 𝕜] [star_ring 𝕜] {A : Type u_2} {B : Type u_3} {E : Type u_4} {F : Type u_5} [add_comm_group A] [add_comm_group B] [add_comm_group E] [add_comm_group F] [star_add_monoid A] [star_add_monoid B] [star_add_monoid E] [star_add_monoid F] [module 𝕜 A] [module 𝕜 B] [module 𝕜 E] [module 𝕜 F] [star_module 𝕜 A] [star_module 𝕜 B] [star_module 𝕜 E] [star_module 𝕜 F] [finite_dimensional 𝕜 A] [finite_dimensional 𝕜 B] [finite_dimensional 𝕜 E] [finite_dimensional 𝕜 F] (f : E →ₗ[𝕜] F) (g : A →ₗ[𝕜] B) :
theorem linear_map.mul'_real {𝕜 : Type u_1} [field 𝕜] [star_ring 𝕜] (A : Type u_5) [ring A] [module 𝕜 A] [star_ring A] [star_module 𝕜 A] [smul_comm_class 𝕜 A A] [is_scalar_tower 𝕜 A A] [finite_dimensional 𝕜 A] :
theorem tensor_product.assoc_real {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [field 𝕜] [add_comm_group E] [add_comm_group F] [add_comm_group G] [star_add_monoid E] [star_add_monoid F] [star_add_monoid G] [module 𝕜 E] [module 𝕜 F] [module 𝕜 G] [star_ring 𝕜] [star_module 𝕜 G] [finite_dimensional 𝕜 E] [finite_dimensional 𝕜 F] [finite_dimensional 𝕜 G] [star_module 𝕜 E] [star_module 𝕜 F] :
theorem tensor_product.comm_real {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [field 𝕜] [add_comm_group E] [add_comm_group F] [star_add_monoid E] [star_add_monoid F] [module 𝕜 E] [module 𝕜 F] [star_ring 𝕜] [finite_dimensional 𝕜 E] [finite_dimensional 𝕜 F] [star_module 𝕜 E] [star_module 𝕜 F] :
theorem tensor_product.lid_real {𝕜 : Type u_1} {E : Type u_2} [field 𝕜] [add_comm_group E] [star_add_monoid E] [module 𝕜 E] [star_ring 𝕜] [finite_dimensional 𝕜 E] [star_module 𝕜 E] :
theorem tensor_product.rid_real {𝕜 : Type u_1} {E : Type u_2} [field 𝕜] [add_comm_group E] [star_add_monoid E] [module 𝕜 E] [star_ring 𝕜] [finite_dimensional 𝕜 E] [star_module 𝕜 E] :
theorem tensor_op_star_apply {𝕜 : Type u_1} {E : Type u_2} [field 𝕜] [add_comm_group E] [star_add_monoid E] [module 𝕜 E] [star_ring 𝕜] [finite_dimensional 𝕜 E] [star_module 𝕜 E] (x : E) (y : Eᵐᵒᵖ) :
theorem ten_swap_star {𝕜 : Type u_1} {E : Type u_2} [field 𝕜] [add_comm_group E] [star_add_monoid E] [module 𝕜 E] [star_ring 𝕜] [finite_dimensional 𝕜 E] [star_module 𝕜 E] (x : tensor_product 𝕜 E Eᵐᵒᵖ) :