mathlib3 documentation

monlib / linear_algebra.to_matrix_of_equiv

to_matrix_of_equiv #

This defines the identification $L(M_{n \times m})\cong_{a} M_{n \times m}$ (see linear_map.to_matrix_of_alg_equiv; also see matrix.to_lin_of_alg_equiv).

noncomputable def orthonormal_basis.to_matrix {𝕜 : Type u_4} [is_R_or_C 𝕜] {n : Type u_1} {E : Type (max u_2 u_3)} [fintype n] [decidable_eq n] [normed_add_comm_group E] [inner_product_space 𝕜 E] [finite_dimensional 𝕜 E] (b : orthonormal_basis n 𝕜 E) :
(E →ₗ[𝕜] E) ≃⋆ₐ[𝕜] matrix n n 𝕜

the star-algebraic isomorphism from E →ₗ[𝕜] E to the matrix ring M_n(𝕜) given by the orthonormal basis b on E

Equations
theorem orthonormal_basis.to_matrix_apply {𝕜 : Type u_4} [is_R_or_C 𝕜] {n : Type u_1} {E : Type (max u_2 u_3)} [fintype n] [decidable_eq n] [normed_add_comm_group E] [inner_product_space 𝕜 E] [finite_dimensional 𝕜 E] (b : orthonormal_basis n 𝕜 E) (x : E →ₗ[𝕜] E) (i j : n) :
(b.to_matrix) x i j = has_inner.inner (b i) (x (b j))
theorem orthonormal_basis.to_matrix_symm_apply {𝕜 : Type u_4} [is_R_or_C 𝕜] {n : Type u_1} {E : Type (max u_2 u_3)} [fintype n] [decidable_eq n] [normed_add_comm_group E] [inner_product_space 𝕜 E] [finite_dimensional 𝕜 E] (b : orthonormal_basis n 𝕜 E) (x : matrix n n 𝕜) :
(b.to_matrix.symm) x = finset.univ.sum (λ (i : n), finset.univ.sum (λ (j : n), x i j (rank_one (b i) (b j))))
theorem orthonormal_basis.to_matrix_symm_apply' {𝕜 : Type u_4} [is_R_or_C 𝕜] {n : Type u_1} {E : Type (max u_2 u_3)} [fintype n] [decidable_eq n] [normed_add_comm_group E] [inner_product_space 𝕜 E] [finite_dimensional 𝕜 E] (b : orthonormal_basis n 𝕜 E) (x : matrix n n 𝕜) :
noncomputable def euclidean_space.orthonormal_basis (n : Type u_1) (𝕜 : Type u_2) [is_R_or_C 𝕜] [fintype n] [decidable_eq n] :
Equations
theorem linear_equiv.one_symm {R : Type u_1} {E : Type u_2} [semiring R] [add_comm_monoid E] [module R E] :
1.symm = 1
theorem linear_equiv.to_linear_map_one {R : Type u_1} {E : Type u_2} [semiring R] [add_comm_monoid E] [module R E] :
theorem linear_equiv.refl_conj {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_monoid E] [module R E] :
theorem linear_equiv.conj_mul {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_semiring R] [add_comm_monoid E] [add_comm_monoid F] [module R E] [module R F] (f : E ≃ₗ[R] F) (x y : module.End R E) :
(f.conj) (x * y) = (f.conj) x * (f.conj) y
theorem linear_equiv.conj_apply_one {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_semiring R] [add_comm_monoid E] [add_comm_monoid F] [module R E] [module R F] (f : E ≃ₗ[R] F) :
(f.conj) 1 = 1
theorem linear_equiv.conj_one {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_monoid E] [module R E] :
1.conj = 1
theorem linear_equiv.one_apply {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_monoid E] [module R E] (x : E) :
1 x = x
def linear_equiv.inner_conj {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_semiring R] [add_comm_monoid E] [add_comm_monoid F] [module R E] [module R F] (ϱ : E ≃ₗ[R] F) :
Equations
theorem linear_map.to_matrix_of_alg_equiv_apply' {R : Type u_1} {I : Type u_2} {J : Type u_3} [fintype I] [fintype J] [comm_semiring R] [decidable_eq I] [decidable_eq J] (x : matrix I J R →ₗ[R] matrix I J R) (ij kl : I × J) :
def matrix.rank_one_std_basis {R : Type u_1} [comm_semiring R] {I : Type u_2} {J : Type u_3} [decidable_eq I] [decidable_eq J] (ij kl : I × J) (r : R) :
matrix I J R →ₗ[R] matrix I J R
Equations
theorem matrix.rank_one_std_basis_apply {R : Type u_1} [comm_semiring R] {I : Type u_2} {J : Type u_3} [decidable_eq I] [decidable_eq J] (ij kl : I × J) (r : R) (x : matrix I J R) :
theorem matrix.to_lin_of_alg_equiv_eq {R : Type u_1} {I : Type u_2} {J : Type u_3} [fintype I] [fintype J] [comm_semiring R] [decidable_eq I] [decidable_eq J] (x : matrix (I × J) (I × J) R) :
matrix.to_lin_of_alg_equiv x = finset.univ.sum (λ (ij : I × J), finset.univ.sum (λ (kl : I × J), x ij kl matrix.rank_one_std_basis ij kl 1))
theorem matrix.inner_aut_coord {𝕜 : Type u_4} [is_R_or_C 𝕜] {n : Type u_5} [fintype n] [decidable_eq n] (U : (matrix.unitary_group n 𝕜)) (ij kl : n × n) :