mathlib3 documentation

monlib / linear_algebra.invariant_submodule

Invariant submodules #

In this file, we define and prove some basic results on invariant submodules.

def submodule.invariant_under {E : Type u_1} {R : Type u_2} [ring R] [add_comm_group E] [module R E] (U : submodule R E) (T : E →ₗ[R] E) :
Prop

U is T invariant (ver 1): U ≤ U.comap

Equations
@[simp]
theorem submodule.invariant_under_iff_map {E : Type u_1} {R : Type u_2} [ring R] [add_comm_group E] [module R E] (U : submodule R E) (T : E →ₗ[R] E) :

U is T invariant if and only if U.map T ≤ U

theorem submodule.invariant_under_iff_maps_to {E : Type u_1} {R : Type u_2} [ring R] [add_comm_group E] [module R E] (U : submodule R E) (T : E →ₗ[R] E) :

U is T invariant if and only if set.maps_to T U U

theorem submodule.invariant_under_iff {E : Type u_1} {R : Type u_2} [ring R] [add_comm_group E] [module R E] (U : submodule R E) (T : E →ₗ[R] E) :

U is T invariant is equivalent to saying T(U) ⊆ U

theorem submodule.linear_proj_of_is_compl_eq_self_iff {E : Type u_1} {R : Type u_2} [ring R] [add_comm_group E] [module R E] {p q : submodule R E} (hpq : is_compl p q) (x : E) :

projection to p along q of x equals x if and only if x ∈ p

theorem submodule.invariant_under.linear_proj_comp_self_eq {E : Type u_1} {R : Type u_2} [ring R] [add_comm_group E] [module R E] (U V : submodule R E) (hUV : is_compl U V) (T : E →ₗ[R] E) (h : U.invariant_under T) (x : U) :
theorem submodule.invariant_under_of_linear_proj_comp_self_eq {E : Type u_1} {R : Type u_2} [ring R] [add_comm_group E] [module R E] (U V : submodule R E) (hUV : is_compl U V) (T : E →ₗ[R] E) (h : (x : U), ((U.linear_proj_of_is_compl V hUV) (T x)) = T x) :
theorem submodule.invariant_under_iff_linear_proj_comp_self_eq {E : Type u_1} {R : Type u_2} [ring R] [add_comm_group E] [module R E] (U V : submodule R E) (hUV : is_compl U V) (T : E →ₗ[R] E) :

U is invariant under T if and only if pᵤ ∘ₗ T = T, where pᵤ denotes the linear projection to U along V

theorem submodule.linear_proj_of_is_compl_eq_self_sub_linear_proj {E : Type u_1} {R : Type u_2} [ring R] [add_comm_group E] [module R E] {p q : submodule R E} (hpq : is_compl p q) (x : E) :

V is invariant under T if and only if pᵤ ∘ₗ (T ∘ₗ pᵤ) = pᵤ ∘ₗ T, where pᵤ denotes the linear projection to U along V

both U and V are invariant under T if and only if T commutes with pᵤ, where pᵤ denotes the linear projection to U along V

theorem submodule.invariant_under_symm_iff_le_map {E : Type u_1} {R : Type u_2} [ring R] [add_comm_group E] [module R E] (U : submodule R E) (T : E ≃ₗ[R] E) :

U is invariant under T.symm if and only if U ⊆ T(U)