Basic examples on quantum adjacency matrices #
This file contains elementary examples of quantum adjacency matrices, such as the complete graph and the trivial graph.
noncomputable
def
qam.complete_graph
(E : Type u_1)
[has_one E]
[normed_add_comm_group E]
[inner_product_space ℂ E] :
Equations
- qam.complete_graph E = ↑(rank_one 1 1)
theorem
qam.complete_graph_eq
{E : Type u_1}
[has_one E]
[normed_add_comm_group E]
[inner_product_space ℂ E] :
qam.complete_graph E = ↑(rank_one 1 1)
theorem
qam.complete_graph_eq'
{p : Type u_1}
[fintype p]
[decidable_eq p]
{φ : module.dual ℂ (matrix p p ℂ)}
[hφ : fact φ.is_faithful_pos_map] :
qam.complete_graph (matrix p p ℂ) = (algebra.linear_map ℂ (matrix p p ℂ)).comp (⇑linear_map.adjoint (algebra.linear_map ℂ (matrix p p ℂ)))
theorem
pi.qam.complete_graph_eq'
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map] :
qam.complete_graph (Π (i : p), matrix (n i) (n i) ℂ) = (algebra.linear_map ℂ (Π (i : p), matrix (n i) (n i) ℂ)).comp (⇑linear_map.adjoint (algebra.linear_map ℂ (Π (i : p), matrix (n i) (n i) ℂ)))
theorem
qam.nontracial.complete_graph.qam
{E : Type u_1}
[normed_add_comm_group_of_ring E]
[inner_product_space ℂ E]
[finite_dimensional ℂ E]
[is_scalar_tower ℂ E E]
[smul_comm_class ℂ E E] :
theorem
qam.nontracial.complete_graph.is_self_adjoint
{E : Type u_1}
[has_one E]
[normed_add_comm_group E]
[inner_product_space ℂ E]
[finite_dimensional ℂ E] :
theorem
qam.nontracial.complete_graph.is_real
{p : Type u_1}
[fintype p]
[decidable_eq p]
{φ : module.dual ℂ (matrix p p ℂ)}
[hφ : fact φ.is_faithful_pos_map] :
(qam.complete_graph (matrix p p ℂ)).is_real
theorem
qam.nontracial.complete_graph.is_symm
{p : Type u_1}
[fintype p]
[decidable_eq p]
{φ : module.dual ℂ (matrix p p ℂ)}
[hφ : fact φ.is_faithful_pos_map] :
⇑(linear_equiv.symm_map ℂ (matrix p p ℂ)) (qam.complete_graph (matrix p p ℂ)) = qam.complete_graph (matrix p p ℂ)
theorem
pi.qam.nontracial.complete_graph.is_real
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map] :
(qam.complete_graph (Π (i : p), matrix (n i) (n i) ℂ)).is_real
theorem
pi.qam.nontracial.complete_graph.is_symm
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map] :
⇑(linear_equiv.symm_map ℂ (Π (i : p), matrix (n i) (n i) ℂ)) (qam.complete_graph (Π (i : p), matrix (n i) (n i) ℂ)) = qam.complete_graph (Π (i : p), matrix (n i) (n i) ℂ)
theorem
qam.nontracial.complete_graph.is_reflexive
{E : Type u_1}
[normed_add_comm_group_of_ring E]
[inner_product_space ℂ E]
[finite_dimensional ℂ E]
[is_scalar_tower ℂ E E]
[smul_comm_class ℂ E E] :
⇑(⇑schur_idempotent (qam.complete_graph E)) 1 = 1
theorem
linear_map.mul'_comp_mul'_adjoint_of_delta_form
{p : Type u_1}
[fintype p]
[decidable_eq p]
{φ : module.dual ℂ (matrix p p ℂ)}
{δ : ℂ}
[hφ : fact φ.is_faithful_pos_map]
(hφ₂ : (φ.matrix)⁻¹.trace = δ) :
(linear_map.mul' ℂ (matrix p p ℂ)).comp (⇑linear_map.adjoint (linear_map.mul' ℂ (matrix p p ℂ))) = δ • 1
theorem
linear_map.pi_mul'_comp_mul'_adjoint_of_delta_form
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ) :
(linear_map.mul' ℂ (Π (i : p), matrix (n i) (n i) ℂ)).comp (⇑linear_map.adjoint (linear_map.mul' ℂ (Π (i : p), matrix (n i) (n i) ℂ))) = δ • 1
theorem
qam.nontracial.delta_ne_zero
{p : Type u_1}
[fintype p]
[decidable_eq p]
[nonempty p]
{φ : module.dual ℂ (matrix p p ℂ)}
{δ : ℂ}
[hφ : fact φ.is_faithful_pos_map]
(hφ₂ : (φ.matrix)⁻¹.trace = δ) :
δ ≠ 0
theorem
pi.qam.nontracial.delta_ne_zero
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ) :
δ ≠ 0
@[instance]
noncomputable
def
qam.nontracial.mul'_comp_mul'_adjoint.invertible
{p : Type u_1}
[fintype p]
[decidable_eq p]
[nonempty p]
{φ : module.dual ℂ (matrix p p ℂ)}
{δ : ℂ}
[hφ : fact φ.is_faithful_pos_map]
(hφ₂ : (φ.matrix)⁻¹.trace = δ) :
invertible ((linear_map.mul' ℂ (matrix p p ℂ)).comp (⇑linear_map.adjoint (linear_map.mul' ℂ (matrix p p ℂ))))
Equations
@[instance]
noncomputable
def
pi.qam.nontracial.mul'_comp_mul'_adjoint.invertible
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ) :
invertible ((linear_map.mul' ℂ (Π (i : p), matrix (n i) (n i) ℂ)).comp (⇑linear_map.adjoint (linear_map.mul' ℂ (Π (i : p), matrix (n i) (n i) ℂ))))
Equations
noncomputable
def
qam.trivial_graph
{p : Type u_1}
[fintype p]
[decidable_eq p]
[nonempty p]
{φ : module.dual ℂ (matrix p p ℂ)}
{δ : ℂ}
(hφ : fact φ.is_faithful_pos_map)
(hφ₂ : (φ.matrix)⁻¹.trace = δ) :
Equations
- qam.trivial_graph hφ hφ₂ = let _inst : fact φ.is_faithful_pos_map := hφ, _inst_3 : invertible ((linear_map.mul' ℂ (matrix p p ℂ)).comp (⇑linear_map.adjoint (linear_map.mul' ℂ (matrix p p ℂ)))) := qam.nontracial.mul'_comp_mul'_adjoint.invertible hφ₂ in ⅟ ((linear_map.mul' ℂ (matrix p p ℂ)).comp (⇑linear_map.adjoint (linear_map.mul' ℂ (matrix p p ℂ))))
noncomputable
def
pi.qam.trivial_graph
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
(hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map)
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ) :
Equations
- pi.qam.trivial_graph hφ hφ₂ = let _inst : ∀ (i : p), fact (φ i).is_faithful_pos_map := hφ, _inst_7 : invertible ((linear_map.mul' ℂ (Π (i : p), matrix ((λ (i : p), n i) i) ((λ (i : p), n i) i) ℂ)).comp (⇑linear_map.adjoint (linear_map.mul' ℂ (Π (i : p), matrix ((λ (i : p), n i) i) ((λ (i : p), n i) i) ℂ)))) := pi.qam.nontracial.mul'_comp_mul'_adjoint.invertible hφ₂ in ⅟ ((linear_map.mul' ℂ (Π (i : p), matrix (n i) (n i) ℂ)).comp (⇑linear_map.adjoint (linear_map.mul' ℂ (Π (i : p), matrix (n i) (n i) ℂ))))
theorem
qam.trivial_graph_eq
{p : Type u_1}
[fintype p]
[decidable_eq p]
[nonempty p]
{φ : module.dual ℂ (matrix p p ℂ)}
[hφ : fact φ.is_faithful_pos_map]
{δ : ℂ}
(hφ₂ : (φ.matrix)⁻¹.trace = δ) :
qam.trivial_graph hφ hφ₂ = δ⁻¹ • 1
theorem
pi.qam.trivial_graph_eq
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ) :
pi.qam.trivial_graph hφ hφ₂ = δ⁻¹ • 1
theorem
qam.nontracial.trivial_graph.qam
{p : Type u_1}
[fintype p]
[decidable_eq p]
[nonempty p]
{φ : module.dual ℂ (matrix p p ℂ)}
[hφ : fact φ.is_faithful_pos_map]
{δ : ℂ}
(hφ₂ : (φ.matrix)⁻¹.trace = δ) :
⇑(⇑schur_idempotent (qam.trivial_graph hφ hφ₂)) (qam.trivial_graph hφ hφ₂) = qam.trivial_graph hφ hφ₂
theorem
pi.qam.nontracial.trivial_graph.qam
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ) :
⇑(⇑schur_idempotent (pi.qam.trivial_graph hφ hφ₂)) (pi.qam.trivial_graph hφ hφ₂) = pi.qam.trivial_graph hφ hφ₂
theorem
qam.nontracial.trivial_graph.qam.is_self_adjoint
{p : Type u_1}
[fintype p]
[decidable_eq p]
[nonempty p]
{φ : module.dual ℂ (matrix p p ℂ)}
[hφ : fact φ.is_faithful_pos_map]
{δ : ℂ}
(hφ₂ : (φ.matrix)⁻¹.trace = δ) :
⇑linear_map.adjoint (qam.trivial_graph hφ hφ₂) = qam.trivial_graph hφ hφ₂
theorem
pi.qam.nontracial.trivial_graph.qam.is_self_adjoint
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ) :
⇑linear_map.adjoint (pi.qam.trivial_graph hφ hφ₂) = pi.qam.trivial_graph hφ hφ₂
theorem
qam.nontracial.trivial_graph
{p : Type u_1}
[fintype p]
[decidable_eq p]
[nonempty p]
{φ : module.dual ℂ (matrix p p ℂ)}
[hφ : fact φ.is_faithful_pos_map]
{δ : ℂ}
(hφ₂ : (φ.matrix)⁻¹.trace = δ) :
⇑(⇑schur_idempotent (qam.trivial_graph hφ hφ₂)) 1 = 1
theorem
pi.qam.nontracial.trivial_graph
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ) :
⇑(⇑schur_idempotent (pi.qam.trivial_graph hφ hφ₂)) 1 = 1
theorem
qam.refl_idempotent_one_one_of_delta
{p : Type u_1}
[fintype p]
[decidable_eq p]
[nonempty p]
{φ : module.dual ℂ (matrix p p ℂ)}
[hφ : fact φ.is_faithful_pos_map]
{δ : ℂ}
(hφ₂ : (φ.matrix)⁻¹.trace = δ) :
⇑(⇑schur_idempotent 1) 1 = δ • 1
theorem
pi.qam.refl_idempotent_one_one_of_delta
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ) :
⇑(⇑schur_idempotent 1) 1 = δ • 1
theorem
pi.qam.lm.nontracial.is_unreflexive_iff_reflexive_add_one
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ)
(x : (Π (i : p), matrix (n i) (n i) ℂ) →ₗ[ℂ] Π (i : p), matrix (n i) (n i) ℂ) :
theorem
qam.refl_idempotent_complete_graph_left
{E : Type u_1}
[normed_add_comm_group_of_ring E]
[inner_product_space ℂ E]
[finite_dimensional ℂ E]
[is_scalar_tower ℂ E E]
[smul_comm_class ℂ E E]
(x : E →ₗ[ℂ] E) :
⇑(⇑schur_idempotent (qam.complete_graph E)) x = x
theorem
qam.refl_idempotent_complete_graph_right
{E : Type u_1}
[normed_add_comm_group_of_ring E]
[inner_product_space ℂ E]
[finite_dimensional ℂ E]
[is_scalar_tower ℂ E E]
[smul_comm_class ℂ E E]
(x : E →ₗ[ℂ] E) :
⇑(⇑schur_idempotent x) (qam.complete_graph E) = x
noncomputable
def
qam.complement'
{E : Type u_1}
[normed_add_comm_group_of_ring E]
[inner_product_space ℂ E]
[finite_dimensional ℂ E]
[is_scalar_tower ℂ E E]
[smul_comm_class ℂ E E]
(x : E →ₗ[ℂ] E) :
Equations
- qam.complement' x = qam.complete_graph E - x
theorem
qam.nontracial.complement'.qam
{E : Type u_1}
[normed_add_comm_group_of_ring E]
[inner_product_space ℂ E]
[finite_dimensional ℂ E]
[is_scalar_tower ℂ E E]
[smul_comm_class ℂ E E]
(x : E →ₗ[ℂ] E) :
⇑(⇑schur_idempotent x) x = x ↔ ⇑(⇑schur_idempotent (qam.complement' x)) (qam.complement' x) = qam.complement' x
theorem
qam.nontracial.complement'.qam.is_real
{p : Type u_1}
[fintype p]
[decidable_eq p]
{φ : module.dual ℂ (matrix p p ℂ)}
[hφ : fact φ.is_faithful_pos_map]
(x : matrix p p ℂ →ₗ[ℂ] matrix p p ℂ) :
x.is_real ↔ (qam.complement' x).is_real
theorem
pi.qam.nontracial.complement'.qam.is_real
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(x : (Π (i : p), matrix (n i) (n i) ℂ) →ₗ[ℂ] Π (i : p), matrix (n i) (n i) ℂ) :
x.is_real ↔ (qam.complement' x).is_real
theorem
qam.complement'_complement'
{E : Type u_1}
[normed_add_comm_group_of_ring E]
[inner_product_space ℂ E]
[finite_dimensional ℂ E]
[is_scalar_tower ℂ E E]
[smul_comm_class ℂ E E]
(x : E →ₗ[ℂ] E) :
qam.complement' (qam.complement' x) = x
theorem
qam.nontracial.complement'.ir_reflexive
{E : Type u_1}
[normed_add_comm_group_of_ring E]
[inner_product_space ℂ E]
[finite_dimensional ℂ E]
[is_scalar_tower ℂ E E]
[smul_comm_class ℂ E E]
(x : E →ₗ[ℂ] E)
(α : Prop)
[decidable α] :
⇑(⇑schur_idempotent x) 1 = ite α 1 0 ↔ ⇑(⇑schur_idempotent (qam.complement' x)) 1 = ite α 0 1
def
qam_reflexive
{E : Type u_1}
[normed_add_comm_group_of_ring E]
[inner_product_space ℂ E]
[finite_dimensional ℂ E]
[is_scalar_tower ℂ E E]
[smul_comm_class ℂ E E]
(x : E →ₗ[ℂ] E) :
Prop
Equations
- qam_reflexive x = (⇑(⇑schur_idempotent x) x = x ∧ ⇑(⇑schur_idempotent x) 1 = 1)
def
qam_irreflexive
{E : Type u_1}
[normed_add_comm_group_of_ring E]
[inner_product_space ℂ E]
[finite_dimensional ℂ E]
[is_scalar_tower ℂ E E]
[smul_comm_class ℂ E E]
(x : E →ₗ[ℂ] E) :
Prop
Equations
- qam_irreflexive x = (⇑(⇑schur_idempotent x) x = x ∧ ⇑(⇑schur_idempotent x) 1 = 0)
theorem
qam.complement'_is_irreflexive_iff
{E : Type u_1}
[normed_add_comm_group_of_ring E]
[inner_product_space ℂ E]
[finite_dimensional ℂ E]
[is_scalar_tower ℂ E E]
[smul_comm_class ℂ E E]
(x : E →ₗ[ℂ] E) :
theorem
qam.complement'_is_reflexive_iff
{E : Type u_1}
[normed_add_comm_group_of_ring E]
[inner_product_space ℂ E]
[finite_dimensional ℂ E]
[is_scalar_tower ℂ E E]
[smul_comm_class ℂ E E]
(x : E →ₗ[ℂ] E) :
noncomputable
def
qam.complement''
{p : Type u_1}
[fintype p]
[decidable_eq p]
[nonempty p]
{φ : module.dual ℂ (matrix p p ℂ)}
{δ : ℂ}
(hφ : fact φ.is_faithful_pos_map)
(hφ₂ : (φ.matrix)⁻¹.trace = δ)
(x : matrix p p ℂ →ₗ[ℂ] matrix p p ℂ) :
Equations
- qam.complement'' hφ hφ₂ x = x - qam.trivial_graph hφ hφ₂
noncomputable
def
pi.qam.complement''
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
(hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map)
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ)
(x : (Π (i : p), matrix (n i) (n i) ℂ) →ₗ[ℂ] Π (i : p), matrix (n i) (n i) ℂ) :
Equations
- pi.qam.complement'' hφ hφ₂ x = x - pi.qam.trivial_graph hφ hφ₂
theorem
single_schur_idempotent_real
{p : Type u_1}
[fintype p]
[decidable_eq p]
{φ : module.dual ℂ (matrix p p ℂ)}
[hφ : fact φ.is_faithful_pos_map]
(x y : matrix p p ℂ →ₗ[ℂ] matrix p p ℂ) :
(⇑(⇑schur_idempotent x) y).real = ⇑(⇑schur_idempotent y.real) x.real
theorem
schur_idempotent_reflexive_of_is_real
{p : Type u_1}
[fintype p]
[decidable_eq p]
{φ : module.dual ℂ (matrix p p ℂ)}
[hφ : fact φ.is_faithful_pos_map]
{x : matrix p p ℂ →ₗ[ℂ] matrix p p ℂ}
(hx : x.is_real) :
⇑(⇑schur_idempotent x) 1 = 1 ↔ ⇑(⇑schur_idempotent 1) x = 1
theorem
pi.schur_idempotent_reflexive_of_is_real
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
{x : (Π (i : p), matrix (n i) (n i) ℂ) →ₗ[ℂ] Π (i : p), matrix (n i) (n i) ℂ}
(hx : x.is_real) :
⇑(⇑schur_idempotent x) 1 = 1 ↔ ⇑(⇑schur_idempotent 1) x = 1
theorem
qam.complement''_is_irreflexive_iff
{p : Type u_1}
[fintype p]
[decidable_eq p]
[nonempty p]
{φ : module.dual ℂ (matrix p p ℂ)}
{δ : ℂ}
[hφ : fact φ.is_faithful_pos_map]
(hφ₂ : (φ.matrix)⁻¹.trace = δ)
{x : matrix p p ℂ →ₗ[ℂ] matrix p p ℂ}
(hx : x.is_real) :
qam_irreflexive (qam.complement'' hφ hφ₂ x) ↔ qam_reflexive x
theorem
pi.qam.complement''_is_irreflexive_iff
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ)
{x : (Π (i : p), matrix (n i) (n i) ℂ) →ₗ[ℂ] Π (i : p), matrix (n i) (n i) ℂ}
(hx : x.is_real) :
qam_irreflexive (pi.qam.complement'' hφ hφ₂ x) ↔ qam_reflexive x
noncomputable
def
pi.qam.irreflexive_complement
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
(hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map)
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ)
(x : (Π (i : p), matrix (n i) (n i) ℂ) →ₗ[ℂ] Π (i : p), matrix (n i) (n i) ℂ) :
Equations
- pi.qam.irreflexive_complement hφ hφ₂ x = qam.complete_graph (Π (i : p), matrix (n i) (n i) ℂ) - pi.qam.trivial_graph hφ hφ₂ - x
noncomputable
def
pi.qam.reflexive_complement
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
(hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map)
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ)
(x : (Π (i : p), matrix (n i) (n i) ℂ) →ₗ[ℂ] Π (i : p), matrix (n i) (n i) ℂ) :
Equations
- pi.qam.reflexive_complement hφ hφ₂ x = qam.complete_graph (Π (i : p), matrix (n i) (n i) ℂ) + pi.qam.trivial_graph hφ hφ₂ - x
theorem
qam.nontracial.trivial_graph.is_real
{p : Type u_1}
[fintype p]
[decidable_eq p]
[nonempty p]
{φ : module.dual ℂ (matrix p p ℂ)}
[hφ : fact φ.is_faithful_pos_map]
{δ : ℂ}
(hφ₂ : (φ.matrix)⁻¹.trace = δ) :
(qam.trivial_graph hφ hφ₂).is_real
theorem
pi.qam.nontracial.trivial_graph.is_real
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ) :
(pi.qam.trivial_graph hφ hφ₂).is_real
theorem
pi.qam.irreflexive_complement.is_real
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ)
{x : (Π (i : p), matrix (n i) (n i) ℂ) →ₗ[ℂ] Π (i : p), matrix (n i) (n i) ℂ}
(hx : x.is_real) :
(pi.qam.irreflexive_complement hφ hφ₂ x).is_real
theorem
pi.qam.reflexive_complement.is_real
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ)
{x : (Π (i : p), matrix (n i) (n i) ℂ) →ₗ[ℂ] Π (i : p), matrix (n i) (n i) ℂ}
(hx : x.is_real) :
(pi.qam.reflexive_complement hφ hφ₂ x).is_real
theorem
pi.qam.irreflexive_complement_irreflexive_complement
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ)
{x : (Π (i : p), matrix (n i) (n i) ℂ) →ₗ[ℂ] Π (i : p), matrix (n i) (n i) ℂ} :
pi.qam.irreflexive_complement hφ hφ₂ (pi.qam.irreflexive_complement hφ hφ₂ x) = x
theorem
pi.qam.reflexive_complement_reflexive_complement
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ)
{x : (Π (i : p), matrix (n i) (n i) ℂ) →ₗ[ℂ] Π (i : p), matrix (n i) (n i) ℂ} :
pi.qam.reflexive_complement hφ hφ₂ (pi.qam.reflexive_complement hφ hφ₂ x) = x
theorem
pi.qam.trivial_graph_reflexive_complement_eq_complete_graph
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ) :
pi.qam.reflexive_complement hφ hφ₂ (pi.qam.trivial_graph hφ hφ₂) = qam.complete_graph (Π (i : p), matrix (n i) (n i) ℂ)
theorem
pi.qam.complete_graph_reflexive_complement_eq_trivial_graph
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ) :
pi.qam.reflexive_complement hφ hφ₂ (qam.complete_graph (Π (i : p), matrix (n i) (n i) ℂ)) = pi.qam.trivial_graph hφ hφ₂
theorem
qam.complement'_eq
{E : Type u_1}
[normed_add_comm_group_of_ring E]
[inner_product_space ℂ E]
[finite_dimensional ℂ E]
[is_scalar_tower ℂ E E]
[smul_comm_class ℂ E E]
(a : E →ₗ[ℂ] E) :
qam.complement' a = qam.complete_graph E - a
theorem
pi.qam.irreflexive_complement_is_irreflexive_qam_iff_irreflexive_qam
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ)
{x : (Π (i : p), matrix (n i) (n i) ℂ) →ₗ[ℂ] Π (i : p), matrix (n i) (n i) ℂ}
(hx : x.is_real) :
qam_irreflexive (pi.qam.irreflexive_complement hφ hφ₂ x) ↔ qam_irreflexive x
theorem
pi.qam.reflexive_complment_is_reflexive_qam_iff_reflexive_qam
{p : Type u_1}
[fintype p]
[decidable_eq p]
{n : p → Type u_2}
[Π (i : p), fintype (n i)]
[Π (i : p), decidable_eq (n i)]
{φ : Π (i : p), module.dual ℂ (matrix (n i) (n i) ℂ)}
[nonempty p]
[∀ (i : p), nontrivial (n i)]
{δ : ℂ}
[hφ : ∀ (i : p), fact (φ i).is_faithful_pos_map]
(hφ₂ : ∀ (i : p), ((φ i).matrix)⁻¹.trace = δ)
{x : (Π (i : p), matrix (n i) (n i) ℂ) →ₗ[ℂ] Π (i : p), matrix (n i) (n i) ℂ}
(hx : x.is_real) :
qam_reflexive (pi.qam.reflexive_complement hφ hφ₂ x) ↔ qam_reflexive x