Inverse trigonometric functions. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
See also analysis.special_functions.trigonometric.arctan
for the inverse tan function.
(This is delayed as it is easier to set up after developing complex trigonometric functions.)
Basic inequalities on trigonometric functions.
Inverse of the sin
function, returns values in the range -π / 2 ≤ arcsin x ≤ π / 2
.
It defaults to -π / 2
on (-∞, -1)
and to π / 2
to (1, ∞)
.
Equations
- real.arcsin = coe ∘ set.Icc_extend real.arcsin._proof_1 ⇑(real.sin_order_iso.symm)
theorem
real.arcsin_inj
{x y : ℝ}
(hx₁ : -1 ≤ x)
(hx₂ : x ≤ 1)
(hy₁ : -1 ≤ y)
(hy₂ : y ≤ 1) :
real.arcsin x = real.arcsin y ↔ x = y
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
real.sin
as a local_homeomorph
between (-π / 2, π / 2)
and (-1, 1)
.
Equations
- real.sin_local_homeomorph = {to_local_equiv := {to_fun := real.sin, inv_fun := real.arcsin, source := set.Ioo (-(real.pi / 2)) (real.pi / 2), target := set.Ioo (-1) 1, map_source' := real.maps_to_sin_Ioo, map_target' := real.sin_local_homeomorph._proof_1, left_inv' := real.sin_local_homeomorph._proof_2, right_inv' := real.sin_local_homeomorph._proof_3}, open_source := real.sin_local_homeomorph._proof_4, open_target := real.sin_local_homeomorph._proof_5, continuous_to_fun := real.sin_local_homeomorph._proof_6, continuous_inv_fun := real.sin_local_homeomorph._proof_7}
Inverse of the cos
function, returns values in the range 0 ≤ arccos x
and arccos x ≤ π
.
It defaults to π
on (-∞, -1)
and to 0
to (1, ∞)
.
Equations
- real.arccos x = real.pi / 2 - real.arcsin x
theorem
real.arccos_inj
{x y : ℝ}
(hx₁ : -1 ≤ x)
(hx₂ : x ≤ 1)
(hy₁ : -1 ≤ y)
(hy₂ : y ≤ 1) :
real.arccos x = real.arccos y ↔ x = y
theorem
real.arccos_eq_arcsin
{x : ℝ}
(h : 0 ≤ x) :
real.arccos x = real.arcsin (real.sqrt (1 - x ^ 2))
theorem
real.arcsin_eq_arccos
{x : ℝ}
(h : 0 ≤ x) :
real.arcsin x = real.arccos (real.sqrt (1 - x ^ 2))