mathlib3 documentation

monlib / linear_algebra.my_ips.basic

Some obvious basic properties on inner product space #

This files provides some useful and obvious results for linear maps and continuous linear maps.

theorem inner_self_re {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x : E) :
theorem forall_inner_eq_zero_iff {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x : E) :
(βˆ€ (y : E), has_inner.inner x y = 0) ↔ x = 0

linear maps $p,q$ are equal if and only if $\langle p x, x \rangle = \langle q x, x \rangle$ for any $x$.

theorem continuous_linear_map.is_self_adjoint.ext_iff_inner_map {E : Type u_1} {π•œ : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] [complete_space E] {p q : E β†’L[π•œ] E} (hp : is_self_adjoint p) (hq : is_self_adjoint q) :

Self-adjoint linear operators $p,q$ are equal if and only if $\langle p x, x \rangle_\mathbb{k} = \langle q x, x \rangle_\mathbb{k}$.

in a complex inner product space, we have that an operator $a$ is self-adjoint if and only if $\langle a x, x \rangle_\mathbb{C}$ is real for all $x \in E$

theorem is_self_adjoint.adjoint {E : Type u_1} [normed_add_comm_group E] {π•œ : Type u_2} [is_R_or_C π•œ] [inner_product_space π•œ E] [complete_space E] {a : E β†’L[π•œ] E} (ha : is_self_adjoint a) :

the adjoint of a self-adjoint operator is self-adjoint

theorem is_self_adjoint.inner_re_eq {π•œ : Type u_2} [is_R_or_C π•œ] {E : Type u_1} [normed_add_comm_group E] [inner_product_space π•œ E] [complete_space E] {a : E β†’L[π•œ] E} (ha : is_self_adjoint a) (x : E) :

for a self-adjoint operator $a$, we have $\langle a x, x \rangle_\mathbb{k}$ is real