mathlib3 documentation

monlib / linear_algebra.my_matrix.spectra

@[protected, instance]
def multiset_coe {α : Type u_1} {β : Type u_2} [has_coe α β] :
Equations
theorem finset.val.map_coe {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : α β) (s : finset α) [has_coe β γ] :
@[protected, instance]
noncomputable def multiset_coe_R_to_is_R_or_C {𝕜 : Type u_1} [is_R_or_C 𝕜] :
Equations
noncomputable def matrix.is_almost_hermitian.scalar {𝕜 : Type u_2} [is_R_or_C 𝕜] [decidable_eq 𝕜] {n : Type u_1} {x : matrix n n 𝕜} (hx : x.is_almost_hermitian) :
𝕜
Equations
noncomputable def matrix.is_almost_hermitian.matrix {𝕜 : Type u_2} [is_R_or_C 𝕜] [decidable_eq 𝕜] {n : Type u_1} {x : matrix n n 𝕜} (hx : x.is_almost_hermitian) :
matrix n n 𝕜
Equations
theorem matrix.is_almost_hermitian.eq_smul_matrix {𝕜 : Type u_2} [is_R_or_C 𝕜] [decidable_eq 𝕜] {n : Type u_1} {x : matrix n n 𝕜} (hx : x.is_almost_hermitian) :
x = hx.scalar hx.matrix
theorem matrix.is_almost_hermitian.matrix_is_hermitian {𝕜 : Type u_2} [is_R_or_C 𝕜] [decidable_eq 𝕜] {n : Type u_1} {x : matrix n n 𝕜} (hx : x.is_almost_hermitian) :
noncomputable def matrix.is_almost_hermitian.eigenvalues {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {x : matrix n n 𝕜} (hx : x.is_almost_hermitian) :
n 𝕜
Equations
noncomputable def matrix.is_almost_hermitian.spectra {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {A : matrix n n 𝕜} (hA : A.is_almost_hermitian) :
Equations
noncomputable def matrix.is_hermitian.spectra {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {A : matrix n n 𝕜} (hA : A.is_hermitian) :
Equations
theorem matrix.is_hermitian.spectra_coe {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {A : matrix n n 𝕜} (hA : A.is_hermitian) :
theorem matrix.is_hermitian.mem_coe_spectra_diagonal {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {A : n 𝕜} (hA : (matrix.diagonal A).is_hermitian) (x : 𝕜) :
x (hA.spectra) (i : n), A i = x
theorem matrix.is_hermitian.spectra_set_eq_spectrum {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {A : matrix n n 𝕜} (hA : A.is_hermitian) :
{x : 𝕜 | x (hA.spectra)} = spectrum 𝕜 (matrix.to_lin' A)
theorem matrix.is_hermitian.of_inner_aut {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {A : matrix n n 𝕜} (hA : A.is_hermitian) (U : (matrix.unitary_group n 𝕜)) :
theorem matrix.is_almost_hermitian_iff_smul {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {A : matrix n n 𝕜} :
theorem matrix.is_almost_hermitian.smul {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {A : matrix n n 𝕜} (hA : A.is_almost_hermitian) (α : 𝕜) :
def matrix.is_almost_hermitian.has_almost_equal_spectra_to {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {x y : matrix n n 𝕜} (hx : x.is_almost_hermitian) (hy : y.is_almost_hermitian) :
Prop

we say a matrix $x$ has almost equal spectra to another matrix $y$ if there exists some scalar $0\neq\beta \in \mathbb{C}$ such that $x$ and $\beta y$ have equal spectra

Equations