mathlib3 documentation

monlib / linear_algebra.my_matrix.star_ordered_ring

Matrix algebras are star ordered rings #

This file contains the instance of star_ordered_ring for matrix n n ℂ.

Main definitions #

You need to open_locale matrix_order to use these instances.

theorem matrix.pos_semidef.add {n : Type u_1} [fintype n] {x y : matrix n n } (hx : x.pos_semidef) (hy : y.pos_semidef) :
theorem matrix.eq_zero_iff {n : Type u_1} [fintype n] [decidable_eq n] {x : matrix n n } :
Equations
theorem matrix.le_iff {n : Type u_1} [fintype n] [decidable_eq n] {x y : matrix n n } :
x y (y - x).pos_semidef
noncomputable def matrix.star_ordered_ring {n : Type u_1} [fintype n] [decidable_eq n] :
Equations
theorem matrix.pi.le_iff_sub_nonneg {ι : Type u_1} [fintype ι] [decidable_eq ι] {n : ι Type u_2} [Π (i : ι), fintype (n i)] [Π (i : ι), decidable_eq (n i)] (x y : Π (i : ι), matrix (n i) (n i) ) :
x y (z : Π (i : ι), matrix (n i) (n i) ), y = x + has_star.star z * z
noncomputable def matrix.pi.star_ordered_ring {ι : Type u_1} [fintype ι] [decidable_eq ι] {n : ι Type u_2} [Π (i : ι), fintype (n i)] [Π (i : ι), decidable_eq (n i)] :
star_ordered_ring (Π (i : ι), matrix (n i) (n i) )
Equations
def matrix.neg_semidef {n : Type u_1} [fintype n] [decidable_eq n] (x : matrix n n ) :
Prop
Equations
theorem matrix.neg_semidef_iff_nonpos {n : Type u_1} [fintype n] [decidable_eq n] (x : matrix n n ) :