Power function on ℂ
#
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We construct the power functions x ^ y
, where x
and y
are complex numbers.
The complex power function x ^ y
, given by x ^ y = exp(y log x)
(where log
is the
principal determination of the logarithm), unless x = 0
where one sets 0 ^ 0 = 1
and
0 ^ y = 0
for y ≠ 0
.
Equations
- x.cpow y = ite (x = 0) (ite (y = 0) 1 0) (complex.exp (complex.log x * y))
@[protected, instance]
Equations
theorem
complex.cpow_def
(x y : ℂ) :
x ^ y = ite (x = 0) (ite (y = 0) 1 0) (complex.exp (complex.log x * y))
theorem
complex.cpow_def_of_ne_zero
{x : ℂ}
(hx : x ≠ 0)
(y : ℂ) :
x ^ y = complex.exp (complex.log x * y)
theorem
complex.conj_cpow
(x n : ℂ)
(hx : x.arg ≠ real.pi) :
⇑(star_ring_end ℂ) x ^ n = ⇑(star_ring_end ℂ) (x ^ ⇑(star_ring_end ℂ) n)
theorem
complex.cpow_conj
(x n : ℂ)
(hx : x.arg ≠ real.pi) :
x ^ ⇑(star_ring_end ℂ) n = ⇑(star_ring_end ℂ) (⇑(star_ring_end ℂ) x ^ n)