mathlib3 documentation

monlib / quantum_graph.mess

Some messy stuff #

This file contains some messy stuff that I don't want to put in the main file.

Will organise this later.

noncomputable def ι_map {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} (hφ : φ.is_faithful_pos_map) :
Equations
theorem sig_neg_one {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} [hφ : fact φ.is_faithful_pos_map] (a : matrix n n ) :
(_.sig (-1)) a = (φ.matrix.mul a).mul (φ.matrix)⁻¹
theorem sig_one {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} [hφ : fact φ.is_faithful_pos_map] (a : matrix n n ) :
(_.sig 1) a = ((φ.matrix)⁻¹.mul a).mul φ.matrix
theorem ι_map_apply_rank_one {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} [hφ : fact φ.is_faithful_pos_map] (a b : matrix n n ) :
noncomputable def ι_inv_map {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} (hφ : φ.is_faithful_pos_map) :
Equations
noncomputable def ι_linear_equiv {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} (hφ : φ.is_faithful_pos_map) :
Equations
theorem ten_swap_Psi_eq_Psi_real {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} [hφ : fact φ.is_faithful_pos_map] {t s : } :
ten_swap.comp (_.Psi t s) = (_.Psi s t).real
theorem sig_map_mul {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} [hφ : fact φ.is_faithful_pos_map] (t : ) (x y : matrix n n ) :
(_.sig t) (x.mul y) = ((_.sig t) x).mul ((_.sig t) y)
theorem phi_map_mul {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} [hφ : fact φ.is_faithful_pos_map] (A B : matrix n n →ₗ[] matrix n n ) :
noncomputable def phi_map_of_real_Schur_idempotent.submodule {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} [hφ : fact φ.is_faithful_pos_map] {x : matrix n n →ₗ[] matrix n n } (hx1 : x.is_real) (hx2 : ((qam.refl_idempotent phi_map_of_real_Schur_idempotent.submodule._proof_1) x) x = x) :
Equations
theorem grad_apply_of_real_Schur_idempotent {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} [hφ : fact φ.is_faithful_pos_map] {x : matrix n n →ₗ[] matrix n n } (hx1 : x.is_real) (hx2 : ((qam.refl_idempotent _) x) x = x) :
((phi_map _) x).comp ((grad _) x) = (grad _) x
noncomputable def D_in {n : Type u_1} [fintype n] [decidable_eq n] :
Equations
noncomputable def D_out {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} (hφ : φ.is_faithful_pos_map) :
Equations
theorem D_in_apply {n : Type u_1} [fintype n] [decidable_eq n] (x : matrix n n →ₗ[] matrix n n ) :
theorem ι_inv_grad_apply_rank_one {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} [hφ : fact φ.is_faithful_pos_map] (a b x : matrix n n ) :
theorem ι_inv_map_apply {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} [hφ : fact φ.is_faithful_pos_map] (x y : matrix n n ) :
theorem phi_map_eq' {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} [hφ : fact φ.is_faithful_pos_map] (x : matrix n n →ₗ[] matrix n n ) :
theorem orthonormal_basis_tensor_product_sum_repr {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} [hφ : fact φ.is_faithful_pos_map] (a b : matrix n n ) :
finset.univ.sum (λ (x_3 : n × n), finset.univ.sum (λ (x_4 : n × n), has_inner.inner ((_.basis.tensor_product _.basis) (x_3, x_4)) (a ⊗ₜ[] b) (_.basis.tensor_product _.basis) (x_3, x_4))) = a ⊗ₜ[] b
theorem linear_map.tensor_matrix_eq_rank_one {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} [hφ : fact φ.is_faithful_pos_map] (x : tensor_product (matrix n n ) (matrix n n ) →ₗ[] tensor_product (matrix n n ) (matrix n n )) :
x = finset.univ.sum (λ (i : n × n), finset.univ.sum (λ (j : n × n), finset.univ.sum (λ (k : n × n), finset.univ.sum (λ (l : n × n), has_inner.inner ((_.basis.tensor_product _.basis) (i, j)) (x ((_.basis.tensor_product _.basis) (k, l))) (rank_one ((_.basis.tensor_product _.basis) (i, j)) ((_.basis.tensor_product _.basis) (k, l)))))))
Equations
theorem phi_map_right_inverse {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} [hφ : fact φ.is_faithful_pos_map] (x : {x // x.is_bimodule_map}) :
noncomputable def phi_linear_equiv {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} (hφ : φ.is_faithful_pos_map) :
Equations
theorem linear_equiv.comp_inj {R : Type u_1} {M₁ : Type u_2} {M₂ : Type u_3} {M₃ : Type u_4} [semiring R] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₃] [module R M₁] [module R M₂] [module R M₃] (f : M₁ ≃ₗ[R] M₂) {x y : M₂ →ₗ[R] M₃} :
x = y x.comp f = y.comp f
theorem sig_apply_sig_inv {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} [hφ : fact φ.is_faithful_pos_map] {t : } {x : matrix n n } :
(_.sig t) ((_.sig (-t)) x) = x
theorem sig_inv_apply_sig {n : Type u_1} [fintype n] [decidable_eq n] {φ : module.dual (matrix n n )} [hφ : fact φ.is_faithful_pos_map] {t : } {x : matrix n n } :
(_.sig (-t)) ((_.sig t) x) = x
theorem rsmul_module_map_of_real_lsmul_module_map {n : Type u_1} [fintype n] {f : matrix n n →ₗ[] matrix n n } (hf : (a x : matrix n n ), f (a.mul x) = a.mul (f x)) (a x : matrix n n ) :
(f.real) (a.mul x) = ((f.real) a).mul x