mathlib3 documentation

monlib / linear_algebra.my_ips.mul_op

Some results on the opposite vector space #

This file contains the construction of the basis of an opposite space; and the construction of the opposite inner product space.

noncomputable def basis.mul_opposite {R : Type u_1} {H : Type u_2} [ring R] [add_comm_group H] [module R H] {ι : Type u_3} [fintype ι] (b : basis ι R H) :
Equations
theorem basis.mul_opposite_apply {R : Type u_1} {H : Type u_2} [ring R] [add_comm_group H] [module R H] {ι : Type u_3} [fintype ι] (b : basis ι R H) (i : ι) :
theorem basis.mul_opposite_repr_eq {R : Type u_1} {H : Type u_2} [ring R] [add_comm_group H] [module R H] {ι : Type u_3} [fintype ι] (b : basis ι R H) :
theorem basis.mul_opposite_repr_apply {R : Type u_1} {H : Type u_2} [ring R] [add_comm_group H] [module R H] {ι : Type u_3} [fintype ι] (b : basis ι R H) (x : Hᵐᵒᵖ) :
theorem basis.mul_opposite_is_orthonormal_iff {𝕜 : Type u_1} {H : Type u_2} [is_R_or_C 𝕜] [normed_add_comm_group H] [inner_product_space 𝕜 H] {ι : Type u_3} [fintype ι] (b : basis ι 𝕜 H) :
noncomputable def orthonormal_basis.mul_opposite {𝕜 : Type u_1} {H : Type u_2} [is_R_or_C 𝕜] [normed_add_comm_group H] [inner_product_space 𝕜 H] {ι : Type u_3} [fintype ι] (b : orthonormal_basis ι 𝕜 H) :
Equations
@[protected, instance]
def mul_opposite.star_module {R : Type u_1} {H : Type u_2} [has_star R] [has_smul R H] [has_star H] [star_module R H] :