mathlib3 documentation

monlib / linear_algebra.my_ips.rank_one

rank one operators #

This defines the rank one operator $| x \rangle\!\langle y |$ for continuous linear maps (see rank_one) and linear maps (see rank_one_lm).

def rank_one {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x y : E) :
E β†’L[π•œ] E

we define the rank one operator $| x \rangle\!\langle y |$ by $x \mapsto \langle y, z \rangle \cdot x$

Equations
@[simp]
theorem rank_one_apply {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] {x y : E} (z : E) :
@[simp]
theorem rank_one.smul_apply {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] {x y : E} {Ξ± : π•œ} :
rank_one x (Ξ± β€’ y) = ⇑(star_ring_end π•œ) Ξ± β€’ rank_one x y

$| x \rangle\!\langle \alpha\cdot y | = \bar{\alpha} \cdot | x \rangle\!\langle y |$

@[simp]
theorem rank_one.apply_smul {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] {x y : E} {Ξ± : π•œ} :
rank_one (Ξ± β€’ x) y = Ξ± β€’ rank_one x y

$| \alpha \cdot x \rangle\!\langle y | = \alpha \cdot | x \rangle\!\langle y |$

@[simp]
theorem rank_one.smul_real_apply {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] {x y : E} {Ξ± : ℝ} :
@[simp]
theorem rank_one.apply_rank_one {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x y z w : E) :

$| x \rangle\!\langle y | | z \rangle\!\langle w | = \langle y, z \rangle \cdot | x \rangle\!\langle w |$

theorem continuous_linear_map.comp_rank_one {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x y : E) (u : E β†’L[π•œ] E) :
u.comp (rank_one x y) = rank_one (⇑u x) y

$u \circ | x \rangle\!\langle y | = | u(x) \rangle\!\langle y |$

theorem continuous_linear_map.rank_one_comp {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] [complete_space E] (x y : E) (u : E β†’L[π•œ] E) :

$| x \rangle\!\langle y | \circ u = | x \rangle\!\langle u^*(y) |$

@[simp]
theorem rank_one.is_idempotent_elem {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x : E) (h : β€–xβ€– = 1) :

rank one operators given by norm one vectors are automatically idempotent

theorem rank_one.is_symmetric {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x : E) :
@[simp]
theorem rank_one.is_self_adjoint {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] [complete_space E] (x : E) :

rank one operators are automatically self-adjoint

theorem rank_one.adjoint {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] [complete_space E] (x y : E) :

$| x \rangle\!\langle y |^* = | y \rangle\!\langle x |$

theorem rank_one_inner_left {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x y z w : E) :
theorem rank_one_inner_right {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x y z w : E) :
theorem continuous_linear_map.commutes_with_all_iff {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] [complete_space E] (T : E β†’L[π•œ] E) :
(βˆ€ (S : E β†’L[π•œ] E), commute S T) ↔ βˆƒ (Ξ± : π•œ), T = Ξ± β€’ 1
theorem continuous_linear_map.centralizer {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] [complete_space E] :
set.univ.centralizer = {x : E β†’L[π•œ] E | βˆƒ (Ξ± : π•œ), x = Ξ± β€’ 1}
theorem continuous_linear_map.scalar_centralizer {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] :
{x : E β†’L[π•œ] E | βˆƒ (Ξ± : π•œ), x = Ξ± β€’ 1}.centralizer = set.univ
theorem rank_one.zero_left {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x : E) :
rank_one 0 x = 0
theorem rank_one.zero_right {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x : E) :
rank_one x 0 = 0
theorem rank_one.ext_iff {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x y : E) (h : rank_one x x = rank_one y y) :
βˆƒ (Ξ± : π•œΛ£), x = ↑α β€’ y
theorem continuous_linear_map.ext_inner_map {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] {F : Type u_3} [normed_add_comm_group F] [inner_product_space π•œ F] (T S : E β†’L[π•œ] F) :
T = S ↔ βˆ€ (x : E) (y : F), has_inner.inner (⇑T x) y = has_inner.inner (⇑S x) y
theorem continuous_linear_map.exists_sum_rank_one {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] [finite_dimensional π•œ E] (T : E β†’L[π•œ] E) :
theorem linear_map.exists_sum_rank_one {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] [finite_dimensional π•œ E] (T : E β†’β‚—[π•œ] E) :
theorem rank_one.sum_orthonormal_basis_eq_id {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] {ΞΉ : Type u_3} [fintype ΞΉ] (b : orthonormal_basis ΞΉ π•œ E) :
finset.univ.sum (Ξ» (i : ΞΉ), rank_one (⇑b i) (⇑b i)) = 1
def rank_one_lm {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x y : E) :
E β†’β‚—[π•œ] E

same as rank_one, but as a linear map

Equations
@[simp]
theorem rank_one_lm_apply {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x y z : E) :
theorem rank_one_lm_comp_rank_one_lm {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x y z w : E) :
theorem rank_one_lm_apply_rank_one {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x y z w v : E) :
theorem rank_one_lm_adjoint {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] [finite_dimensional π•œ E] (x y : E) :
theorem sum_rank_one {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] {n : Type u_3} [fintype n] (x : n β†’ E) (y : E) :
rank_one (finset.univ.sum (Ξ» (i : n), x i)) y = finset.univ.sum (Ξ» (i : n), rank_one (x i) y)
theorem rank_one_sum {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] {n : Type u_3} [fintype n] (x : E) (y : n β†’ E) :
rank_one x (finset.univ.sum (Ξ» (i : n), y i)) = finset.univ.sum (Ξ» (i : n), rank_one x (y i))
theorem sum_rank_one_lm {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] {n : Type u_3} [fintype n] (x : n β†’ E) (y : E) :
rank_one_lm (finset.univ.sum (Ξ» (i : n), x i)) y = finset.univ.sum (Ξ» (i : n), rank_one_lm (x i) y)
theorem rank_one_lm_sum {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] {n : Type u_3} [fintype n] (x : E) (y : n β†’ E) :
rank_one_lm x (finset.univ.sum (Ξ» (i : n), y i)) = finset.univ.sum (Ξ» (i : n), rank_one_lm x (y i))
theorem linear_map.ext_of_rank_one {π•œ : Type u_1} {H : Type u_2} {H' : Type u_3} [is_R_or_C π•œ] [add_comm_monoid H'] [module π•œ H'] [normed_add_comm_group H] [inner_product_space π•œ H] [finite_dimensional π•œ H] {x y : (H β†’L[π•œ] H) β†’β‚—[π•œ] H'} (h : βˆ€ (a b : H), ⇑x (rank_one a b) = ⇑y (rank_one a b)) :
x = y
theorem linear_map.ext_of_rank_one' {π•œ : Type u_1} {H : Type u_2} {H' : Type u_3} [is_R_or_C π•œ] [add_comm_monoid H'] [module π•œ H'] [normed_add_comm_group H] [inner_product_space π•œ H] [finite_dimensional π•œ H] {x y : (H β†’β‚—[π•œ] H) β†’β‚—[π•œ] H'} (h : βˆ€ (a b : H), ⇑x ↑(rank_one a b) = ⇑y ↑(rank_one a b)) :
x = y
theorem rank_one.sum_orthonormal_basis_eq_id_lm {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] {ΞΉ : Type u_3} [fintype ΞΉ] (b : orthonormal_basis ΞΉ π•œ E) :
finset.univ.sum (Ξ» (i : ΞΉ), ↑(rank_one (⇑b i) (⇑b i))) = 1
theorem continuous_linear_map.coe_eq_zero {π•œ : Type u_1} {E₁ : Type u_2} {Eβ‚‚ : Type u_3} [is_R_or_C π•œ] [normed_add_comm_group E₁] [normed_add_comm_group Eβ‚‚] [inner_product_space π•œ E₁] [inner_product_space π•œ Eβ‚‚] (f : E₁ β†’L[π•œ] Eβ‚‚) :
↑f = 0 ↔ f = 0
theorem rank_one.eq_zero_iff {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x y : E) :
rank_one x y = 0 ↔ x = 0 ∨ y = 0
theorem rank_one.left_add {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x y z : E) :
rank_one (x + y) z = rank_one x z + rank_one y z
theorem rank_one.right_add {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x y z : E) :
rank_one x (y + z) = rank_one x y + rank_one x z
theorem rank_one.left_sub {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x y z : E) :
rank_one (x - y) z = rank_one x z - rank_one y z
theorem rank_one.right_sub {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x y z : E) :
rank_one x (y - z) = rank_one x y - rank_one x z
theorem linear_map.rank_one_comp {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] [finite_dimensional π•œ E] (x y : E) (u : E β†’β‚—[π•œ] E) :
theorem linear_map.rank_one_comp' {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] [finite_dimensional π•œ E] (x y : E) (u : E β†’β‚—[π•œ] E) :
theorem orthonormal_basis.orthogonal_projection'_eq_sum_rank_one {ΞΉ : Type u_1} {π•œ : Type u_2} [is_R_or_C π•œ] {E : Type u_3} [normed_add_comm_group E] [inner_product_space π•œ E] [fintype ΞΉ] {U : submodule π•œ E} [complete_space β†₯U] (b : orthonormal_basis ΞΉ π•œ β†₯U) :
theorem linear_map.comp_rank_one {π•œ : Type u_1} {E : Type u_2} [is_R_or_C π•œ] [normed_add_comm_group E] [inner_product_space π•œ E] (x y : E) (u : E β†’β‚—[π•œ] E) :