A bit on von Neumann algebras #
This file contains two simple results about von Neumann algebras.
theorem
von_neumann_algebra.has_idempotent_iff_ker_and_range_are_invariant_under_commutant
{H : Type u_1}
[normed_add_comm_group H]
[inner_product_space ℂ H]
[complete_space H]
(M : von_neumann_algebra H)
(e : H →L[ℂ] H)
(h : is_idempotent_elem e) :
e ∈ M ↔ ∀ (y : H →L[ℂ] H), y ∈ M.commutant → (linear_map.ker e.to_linear_map).invariant_under ↑y ∧ (linear_map.range e.to_linear_map).invariant_under ↑y
a continuous linear map e
is in the von Neumann algebra M
if and only if e.ker
and e.range
are M'
(i.e., the commutant of M
or M.centralizer
) invariant subspaces
def
von_neumann_algebra.of_Hilbert_space
{H : Type u_1}
[normed_add_comm_group H]
[inner_product_space ℂ H]
[complete_space H] :
By definition, the bounded linear operators on a Hilbert space H
form a von Neumann algebra.
!!(But the note on the definition says that we can't do this because it's a bundled structure?)!! idk?
Equations
- von_neumann_algebra.of_Hilbert_space = {carrier := set.univ (H →L[ℂ] H), mul_mem' := _, one_mem' := _, add_mem' := _, zero_mem' := _, algebra_map_mem' := _, star_mem' := _, centralizer_centralizer' := _}