The inner product space on finite dimensional C*-algebras #
This file contains some basic results on the inner product space on finite dimensional C*-algebras.
A lemma that states the right multiplication property of a linear functional.
A lemma that states the left multiplication property of a linear functional.
A function that returns the direct sum of matrices for each index of type 'i'.
Equations
- module.dual.pi.matrix_block ψ = finset.univ.sum (λ (i : k), ⇑matrix.include_block (ψ i).matrix)
A lemma that states the inner product of two direct sum matrices is the sum of the inner products of their components.
A function that returns a star algebra equivalence for each index of type 'i'.
the unitary element from the star algebraic equivalence
Equations
- star_alg_equiv.pi.unitary f = λ (i : k), matrix.star_alg_equiv.unitary (f i)
any $^*$-isomorphism on $\bigoplus_i M_{n_i}$ is an inner automorphism
Section single_block
#
The adjoint of a star-algebraic equivalence $f$ on matrix algebras is given by
$$f^*\colon x \mapsto f^{-1}(x Q) Q^{-1},$$
where $Q$ is hφ.matrix
.
Let f
be a star-algebraic equivalence on matrix algebras. Then tfae:
f φ.matrix = φ.matrix
,f.adjoint = f⁻¹
,φ ∘ f = φ
,∀ x y, ⟪f x, f y⟫_ℂ = ⟪x, y⟫_ℂ
,∀ x, ‖f x‖ = ‖x‖
,φ.matrix
commutes withf.unitary
.
Equations
Equations
- module.dual.is_faithful_pos_map.orthonormal_basis = module.dual.is_faithful_pos_map.orthonormal_basis._proof_1.basis.to_orthonormal_basis module.dual.is_faithful_pos_map.orthonormal_basis._proof_2
Section direct_sum #
Equations
- module.dual.pi.is_faithful_pos_map.basis hψ = pi.basis (λ (i : k), _.basis)
Equations
- module.dual.pi.is_faithful_pos_map.orthonormal_basis = (module.dual.pi.is_faithful_pos_map.basis module.dual.pi.is_faithful_pos_map.orthonormal_basis._proof_5).to_orthonormal_basis module.dual.pi.is_faithful_pos_map.orthonormal_basis._proof_6