mathlib3 documentation

monlib / linear_algebra.nacgor

Normed additive commutative groups of rings #

This file contains the definition of normed_add_comm_group_of_ring which is a structure combining the ring structure, the norm, and the metric space structure.

@[class]
structure normed_add_comm_group_of_ring (B : Type u_1) :
Type u_1

normed_add_comm_group structure extended by ring

Instances of this typeclass
Instances of other typeclasses for normed_add_comm_group_of_ring
  • normed_add_comm_group_of_ring.has_sizeof_inst
Equations
theorem pi.normed_add_comm_group_of_ring.norm_eq_sum {ι : Type u_1} [fintype ι] {B : ι Type u_2} [Π (i : ι), normed_add_comm_group_of_ring (B i)] (x : Π (i : ι), B i) :
x = real.sqrt (finset.univ.sum (λ (i : ι), x i ^ 2))