mathlib3 documentation

monlib / linear_algebra.my_ips.strict

Strict tensor product (wip) #

@[instance]
def tensor_product.assoc_has_coe {R : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [comm_semiring R] [add_comm_group E] [add_comm_group F] [add_comm_group G] [module R E] [module R F] [module R G] :
Equations
@[instance]
def tensor_product.assoc_symm_has_coe {R : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [comm_semiring R] [add_comm_group E] [add_comm_group F] [add_comm_group G] [module R E] [module R F] [module R G] :
Equations
@[simp]
theorem tensor_product.assoc_tmul_coe {R : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [comm_semiring R] [add_comm_group E] [add_comm_group F] [add_comm_group G] [module R E] [module R F] [module R G] (a : E) (b : F) (c : G) :
a ⊗ₜ[R] b ⊗ₜ[R] c = (a ⊗ₜ[R] (b ⊗ₜ[R] c))
theorem tensor_product.assoc_coe_coe {R : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [comm_semiring R] [add_comm_group E] [add_comm_group F] [add_comm_group G] [module R E] [module R F] [module R G] (a : tensor_product R (tensor_product R E F) G) :
@[simp]
theorem tensor_product.tmul_assoc_coe {R : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [comm_semiring R] [add_comm_group E] [add_comm_group F] [add_comm_group G] [module R E] [module R F] [module R G] (a : E) (b : F) (c : G) :
a ⊗ₜ[R] (b ⊗ₜ[R] c) = (a ⊗ₜ[R] b ⊗ₜ[R] c)
theorem tensor_product.coe_coe_assoc {R : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [comm_semiring R] [add_comm_group E] [add_comm_group F] [add_comm_group G] [module R E] [module R F] [module R G] (a : tensor_product R E (tensor_product R F G)) :
@[instance]
def tensor_product.lid_has_coe {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] :
Equations
@[instance]
def tensor_product.rid_has_coe {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] :
Equations
@[instance]
Equations
@[instance]
Equations
theorem tensor_product.lid_coe {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] (x : E) (r : R) :
(r ⊗ₜ[R] x) = r x
theorem tensor_product.rid_coe {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] (x : E) (r : R) :
(x ⊗ₜ[R] r) = r x
theorem tensor_product.lid_symm_coe {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] (x : E) :
x = 1 ⊗ₜ[R] x
theorem tensor_product.rid_symm_coe {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] (x : E) :
x = x ⊗ₜ[R] 1
theorem tensor_product.lid_coe' {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] (x : E) (r : R) :
r ⊗ₜ[R] x = r x
theorem tensor_product.rid_coe' {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] (x : E) (r : R) :
x ⊗ₜ[R] r = r x
theorem tensor_product.lid_coe_rid_coe {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] (x : E) :
@[instance]
def fun_tensor_product_assoc_has_coe {R : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [comm_semiring R] [add_comm_group E] [add_comm_group F] [add_comm_group G] [module R E] [module R F] [module R G] {A : Type u_5} :
Equations
@[instance]
def linear_map.tensor_product_assoc_has_coe {R : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [comm_semiring R] [add_comm_group E] [add_comm_group F] [add_comm_group G] [module R E] [module R F] [module R G] {A : Type u_5} [add_comm_monoid A] [module R A] :
Equations
@[instance]
def fun_tensor_product_assoc_has_coe' {R : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [comm_semiring R] [add_comm_group E] [add_comm_group F] [add_comm_group G] [module R E] [module R F] [module R G] {A : Type u_5} :
Equations
@[instance]
def fun_lid_has_coe {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] {A : Type u_3} :
has_coe (tensor_product R R E A) (E A)
Equations
@[instance]
def fun_lid_has_coe' {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] {A : Type u_3} :
has_coe (E A) (tensor_product R R E A)
Equations
@[instance]
Equations
@[instance]
def fun_rid_has_coe {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] {A : Type u_3} :
has_coe (tensor_product R E R A) (E A)
Equations
@[instance]
def fun_rid_has_coe' {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] {A : Type u_3} :
has_coe (E A) (tensor_product R E R A)
Equations
@[instance]
Equations
theorem linear_map.lid_coe {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] {A : Type u_3} [add_comm_monoid A] [module R A] (f : E →ₗ[R] A) :
theorem linear_map.lid_symm_coe {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] {A : Type u_3} [add_comm_monoid A] [module R A] (f : tensor_product R R E →ₗ[R] A) :
theorem linear_map.rid_coe {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] {A : Type u_3} [add_comm_monoid A] [module R A] (f : E →ₗ[R] A) :
theorem linear_map.rid_symm_coe {R : Type u_1} {E : Type u_2} [comm_semiring R] [add_comm_group E] [module R E] {A : Type u_3} [add_comm_monoid A] [module R A] (f : tensor_product R E R →ₗ[R] A) :