mathlib3 documentation

monlib / rep_theory.aut_mat

Inner automorphisms #

In this file we prove that any algebraic automorphism is an inner automorphism.

We work in a field is_R_or_C π•œ and finite dimensional vector spaces and matrix algebras.

main definition #

def linear_equiv.matrix_conj_of: this defines an algebraic automorphism over $Mβ‚™$ given by $x \mapsto yxy^{-1}$ for some linear automorphism $y$ over $\mathbb{k}^n$

main result #

automorphism_matrix_inner''': given an algebraic automorphism $f$ over a non-trivial finite-dimensional matrix algebra $M_n(\mathbb{k})$, we have that there exists a linear automorphism $T$ over the vector space $\mathbb{k}^n$ such that f = T.matrix_conj_of

theorem automorphism_matrix_inner {n : Type u_1} {R : Type u_2} [fintype n] [field R] [decidable_eq n] [nonempty n] (f : matrix n n R ≃ₐ[R] matrix n n R) :

any automorphism of Mβ‚™ is inner given by π•œβΏ, in particular, given a bijective linear map f ∈ L(Mβ‚™) such that f(ab)=f(a)f(b), we have that there exists a matrix T ∈ Mβ‚™ such that βˆ€ a ∈ Mβ‚™ : f(a) * T = T * a and T is invertible

theorem automorphism_matrix_inner'' {n : Type u_1} {π•œ : Type u_3} [field π•œ] [fintype n] [decidable_eq n] [nonempty n] (f : matrix n n π•œ ≃ₐ[π•œ] matrix n n π•œ) :

given an automorphic algebraic equivalence f on Mβ‚™, we have that there exists a linear equivalence T such that f(a) = M(T) * a * M(β…Ÿ T), i.e., any automorphic algebraic equivalence on Mβ‚™ is inner

def algebra.aut_inner {R : Type u_1} {E : Type u_2} [comm_semiring R] [semiring E] [algebra R E] (x : E) [invertible x] :
Equations
theorem algebra.aut_inner_apply {R : Type u_1} {E : Type u_2} [comm_semiring R] [semiring E] [algebra R E] (x : E) [invertible x] (y : E) :
theorem algebra.aut_inner_symm_apply {R : Type u_1} {E : Type u_2} [comm_semiring R] [semiring E] [algebra R E] (x : E) [invertible x] (y : E) :
theorem aut_mat_inner {n : Type u_1} {π•œ : Type u_3} [field π•œ] [fintype n] [decidable_eq n] (f : matrix n n π•œ ≃ₐ[π•œ] matrix n n π•œ) :
theorem aut_mat_inner' {n : Type u_1} {π•œ : Type u_3} [field π•œ] [fintype n] [decidable_eq n] (f : matrix n n π•œ ≃ₐ[π•œ] matrix n n π•œ) :
βˆƒ (T : GL n π•œ), f = algebra.aut_inner ⇑T
theorem aut_mat_inner_trace_preserving {n : Type u_1} {π•œ : Type u_3} [field π•œ] [fintype n] [decidable_eq n] (f : matrix n n π•œ ≃ₐ[π•œ] matrix n n π•œ) (x : matrix n n π•œ) :
theorem matrix.commutes_with_all_iff {n : Type u_1} [fintype n] {R : Type u_2} [comm_semiring R] [decidable_eq n] {x : matrix n n R} :
(βˆ€ (y : matrix n n R), commute y x) ↔ βˆƒ (Ξ± : R), x = Ξ± β€’ 1

if a matrix commutes with all matrices, then it is equal to a scalar multiplied by the identity

theorem matrix.commutes_with_all_iff_of_ne_zero {n : Type u_1} {π•œ : Type u_3} [field π•œ] [fintype n] [decidable_eq n] [nonempty n] {x : matrix n n π•œ} (hx : x β‰  0) :
(βˆ€ (y : matrix n n π•œ), commute y x) ↔ βˆƒ! (Ξ± : π•œΛ£), x = ↑α β€’ 1
theorem algebra.aut_inner_eq_aut_inner_iff {n : Type u_1} {π•œ : Type u_3} [field π•œ] [fintype n] [decidable_eq n] (x y : matrix n n π•œ) [invertible x] [invertible y] :