@[simp]
theorem
linear_equiv.symm_map_symm_apply
(R : Type u_1)
[is_R_or_C R]
(M : Type u_2)
[normed_add_comm_group M]
[inner_product_space R M]
[star_add_monoid M]
[star_module R M]
[finite_dimensional R M]
(f : M →ₗ[R] M) :
⇑((linear_equiv.symm_map R M).symm) f = (⇑linear_map.adjoint f).real
@[simp]
theorem
linear_equiv.symm_map_apply
(R : Type u_1)
[is_R_or_C R]
(M : Type u_2)
[normed_add_comm_group M]
[inner_product_space R M]
[star_add_monoid M]
[star_module R M]
[finite_dimensional R M]
(f : M →ₗ[R] M) :
⇑(linear_equiv.symm_map R M) f = ⇑linear_map.adjoint f.real
noncomputable
def
linear_equiv.symm_map
(R : Type u_1)
[is_R_or_C R]
(M : Type u_2)
[normed_add_comm_group M]
[inner_product_space R M]
[star_add_monoid M]
[star_module R M]
[finite_dimensional R M] :
theorem
linear_equiv.symm_map_real
{R : Type u_1}
[is_R_or_C R]
{M : Type u_2}
[normed_add_comm_group M]
[inner_product_space R M]
[star_add_monoid M]
[star_module R M]
[finite_dimensional R M] :
↑(linear_equiv.symm_map R M).real = ↑((linear_equiv.symm_map R M).symm)
theorem
linear_equiv.symm_map_rank_one_apply
{n : Type u_1}
[fintype n]
[decidable_eq n]
{s : n → Type u_2}
[Π (i : n), fintype (s i)]
[Π (i : n), decidable_eq (s i)]
{ψ : Π (i : n), module.dual ℂ (matrix (s i) (s i) ℂ)}
[hψ : ∀ (i : n), fact (ψ i).is_faithful_pos_map]
(a b : Π (i : n), matrix (s i) (s i) ℂ) :
⇑(linear_equiv.symm_map ℂ (Π (i : n), matrix (s i) (s i) ℂ)) ↑(rank_one a b) = ↑(rank_one (⇑(module.dual.pi.is_faithful_pos_map.sig hψ (-1)) (has_star.star b)) (has_star.star a))
theorem
linear_equiv.symm_map_symm_rank_one_apply
{n : Type u_1}
[fintype n]
[decidable_eq n]
{s : n → Type u_2}
[Π (i : n), fintype (s i)]
[Π (i : n), decidable_eq (s i)]
{ψ : Π (i : n), module.dual ℂ (matrix (s i) (s i) ℂ)}
[hψ : ∀ (i : n), fact (ψ i).is_faithful_pos_map]
(a b : Π (i : n), matrix (s i) (s i) ℂ) :
⇑((linear_equiv.symm_map ℂ (Π (i : n), matrix (s i) (s i) ℂ)).symm) ↑(rank_one a b) = ↑(rank_one (has_star.star b) (⇑(module.dual.pi.is_faithful_pos_map.sig hψ (-1)) (has_star.star a)))
theorem
pi.symm_map_eq
{n : Type u_1}
[fintype n]
[decidable_eq n]
{s : n → Type u_2}
[Π (i : n), fintype (s i)]
[Π (i : n), decidable_eq (s i)]
{ψ : Π (i : n), module.dual ℂ (matrix (s i) (s i) ℂ)}
[hψ : ∀ (i : n), fact (ψ i).is_faithful_pos_map]
(f : (Π (i : n), matrix (s i) (s i) ℂ) →ₗ[ℂ] Π (i : n), matrix (s i) (s i) ℂ) :
⇑(linear_equiv.symm_map ℂ (Π (i : n), matrix (s i) (s i) ℂ)) f = ↑(tensor_product.lid ℂ (Π (i : n), matrix (s i) (s i) ℂ)).comp (↑(tensor_product.comm ℂ (Π (i : n), matrix (s i) (s i) ℂ) ℂ).comp ((tensor_product.map 1 ((⇑linear_map.adjoint (algebra.linear_map ℂ (Π (i : n), matrix (s i) (s i) ℂ))).comp (linear_map.mul' ℂ (Π (i : n), matrix (s i) (s i) ℂ)))).comp (↑(tensor_product.assoc ℂ (Π (i : n), matrix (s i) (s i) ℂ) (Π (i : n), matrix (s i) (s i) ℂ) (Π (i : n), matrix (s i) (s i) ℂ)).comp ((tensor_product.map (tensor_product.map 1 f) 1).comp ((tensor_product.map ((⇑linear_map.adjoint (linear_map.mul' ℂ (Π (i : n), matrix (s i) (s i) ℂ))).comp (algebra.linear_map ℂ (Π (i : n), matrix (s i) (s i) ℂ))) 1).comp ↑((tensor_product.lid ℂ (Π (i : n), matrix (s i) (s i) ℂ)).symm))))))
theorem
pi.symm_map_symm_eq
{n : Type u_1}
[fintype n]
[decidable_eq n]
{s : n → Type u_2}
[Π (i : n), fintype (s i)]
[Π (i : n), decidable_eq (s i)]
{ψ : Π (i : n), module.dual ℂ (matrix (s i) (s i) ℂ)}
[hψ : ∀ (i : n), fact (ψ i).is_faithful_pos_map]
(f : (Π (i : n), matrix (s i) (s i) ℂ) →ₗ[ℂ] Π (i : n), matrix (s i) (s i) ℂ) :
⇑((linear_equiv.symm_map ℂ (Π (i : n), matrix (s i) (s i) ℂ)).symm) f = ↑(tensor_product.lid ℂ (Π (i : n), matrix (s i) (s i) ℂ)).comp ((tensor_product.map ((⇑linear_map.adjoint (algebra.linear_map ℂ (Π (i : n), matrix (s i) (s i) ℂ))).comp (linear_map.mul' ℂ (Π (i : n), matrix (s i) (s i) ℂ))) 1).comp ((tensor_product.map (tensor_product.map 1 f) 1).comp (↑((tensor_product.assoc ℂ (Π (i : n), matrix (s i) (s i) ℂ) (Π (i : n), matrix (s i) (s i) ℂ) (Π (i : n), matrix (s i) (s i) ℂ)).symm).comp ((tensor_product.map 1 ((⇑linear_map.adjoint (linear_map.mul' ℂ (Π (i : n), matrix (s i) (s i) ℂ))).comp (algebra.linear_map ℂ (Π (i : n), matrix (s i) (s i) ℂ)))).comp (↑((tensor_product.comm ℂ (Π (i : n), matrix (s i) (s i) ℂ) ℂ).symm).comp ↑((tensor_product.lid ℂ (Π (i : n), matrix (s i) (s i) ℂ)).symm))))))
theorem
pi.symm_map_tfae
{n : Type u_1}
[fintype n]
[decidable_eq n]
{s : n → Type u_2}
[Π (i : n), fintype (s i)]
[Π (i : n), decidable_eq (s i)]
{ψ : Π (i : n), module.dual ℂ (matrix (s i) (s i) ℂ)}
[hψ : ∀ (i : n), fact (ψ i).is_faithful_pos_map]
(A : (Π (i : n), matrix (s i) (s i) ℂ) →ₗ[ℂ] Π (i : n), matrix (s i) (s i) ℂ) :
[⇑(linear_equiv.symm_map ℂ (Π (i : n), matrix (s i) (s i) ℂ)) A = A, ⇑((linear_equiv.symm_map ℂ (Π (i : n), matrix (s i) (s i) ℂ)).symm) A = A, A.real = ⇑linear_map.adjoint A, ∀ (x : Π (i : n), matrix (s i) (s i) ℂ) (y : Π (i : n), matrix ((λ (i : n), s i) i) ((λ (i : n), s i) i) ℂ), ⇑(module.dual.pi ψ) (⇑A x * y) = ⇑(module.dual.pi ψ) (x * ⇑A y)].tfae
theorem
commute_real_real
{R : Type u_1}
{A : Type u_2}
[semiring R]
[star_ring R]
[add_comm_monoid A]
[module R A]
[star_add_monoid A]
[star_module R A]
(f g : A →ₗ[R] A) :
theorem
module.dual.pi.is_faithful_pos_map.sig_real
{n : Type u_1}
[fintype n]
[decidable_eq n]
{s : n → Type u_2}
[Π (i : n), fintype (s i)]
[Π (i : n), decidable_eq (s i)]
{ψ : Π (i : n), module.dual ℂ (matrix (s i) (s i) ℂ)}
[hψ : ∀ (i : n), fact (ψ i).is_faithful_pos_map] :
theorem
pi.commute_sig_pos_neg
{n : Type u_1}
[fintype n]
[decidable_eq n]
{s : n → Type u_2}
[Π (i : n), fintype (s i)]
[Π (i : n), decidable_eq (s i)]
{ψ : Π (i : n), module.dual ℂ (matrix (s i) (s i) ℂ)}
[hψ : ∀ (i : n), fact (ψ i).is_faithful_pos_map]
(r : ℝ)
(x : (Π (i : n), matrix (s i) (s i) ℂ) →ₗ[ℂ] Π (i : n), matrix (s i) (s i) ℂ) :
theorem
pi.symm_map_apply_eq_symm_map_symm_apply_iff
{n : Type u_1}
[fintype n]
[decidable_eq n]
{s : n → Type u_2}
[Π (i : n), fintype (s i)]
[Π (i : n), decidable_eq (s i)]
{ψ : Π (i : n), module.dual ℂ (matrix (s i) (s i) ℂ)}
[hψ : ∀ (i : n), fact (ψ i).is_faithful_pos_map]
(A : (Π (i : n), matrix (s i) (s i) ℂ) →ₗ[ℂ] Π (i : n), matrix (s i) (s i) ℂ) :
⇑(linear_equiv.symm_map ℂ (Π (i : n), matrix (s i) (s i) ℂ)) A = ⇑((linear_equiv.symm_map ℂ (Π (i : n), matrix (s i) (s i) ℂ)).symm) A ↔ commute A (module.dual.pi.is_faithful_pos_map.sig hψ 1).to_linear_map
theorem
Psi.real_apply
{n : Type u_1}
[fintype n]
[decidable_eq n]
{s : n → Type u_2}
[Π (i : n), fintype (s i)]
[Π (i : n), decidable_eq (s i)]
{ψ : Π (i : n), module.dual ℂ (matrix (s i) (s i) ℂ)}
[hψ : ∀ (i : n), fact (ψ i).is_faithful_pos_map]
(r₁ r₂ : ℝ)
(A : (Π (i : n), matrix (s i) (s i) ℂ) →ₗ[ℂ] Π (i : n), matrix (s i) (s i) ℂ) :
⇑(module.dual.pi.is_faithful_pos_map.Psi hψ r₁ r₂) A.real = ⇑(tensor_product.map (module.dual.pi.is_faithful_pos_map.sig hψ (2 * r₁)).to_linear_map ((op.comp (module.dual.pi.is_faithful_pos_map.sig hψ (1 - 2 * r₂)).to_linear_map).comp unop)) (has_star.star (⇑(module.dual.pi.is_faithful_pos_map.Psi hψ r₁ r₂) A))
theorem
Psi.adjoint_apply
{n : Type u_1}
[fintype n]
[decidable_eq n]
{s : n → Type u_2}
[Π (i : n), fintype (s i)]
[Π (i : n), decidable_eq (s i)]
{ψ : Π (i : n), module.dual ℂ (matrix (s i) (s i) ℂ)}
[hψ : ∀ (i : n), fact (ψ i).is_faithful_pos_map]
(r₁ r₂ : ℝ)
(A : (Π (i : n), matrix (s i) (s i) ℂ) →ₗ[ℂ] Π (i : n), matrix (s i) (s i) ℂ) :
⇑(module.dual.pi.is_faithful_pos_map.Psi hψ r₁ r₂) (⇑linear_map.adjoint A) = ⇑(tensor_product.map (module.dual.pi.is_faithful_pos_map.sig hψ (r₁ - r₂)).to_linear_map (op.comp ((module.dual.pi.is_faithful_pos_map.sig hψ (r₁ - r₂)).to_linear_map.comp unop))) (⇑ten_swap (has_star.star (⇑(module.dual.pi.is_faithful_pos_map.Psi hψ r₁ r₂) A)))
theorem
Psi.symm_map_apply
{n : Type u_1}
[fintype n]
[decidable_eq n]
{s : n → Type u_2}
[Π (i : n), fintype (s i)]
[Π (i : n), decidable_eq (s i)]
{ψ : Π (i : n), module.dual ℂ (matrix (s i) (s i) ℂ)}
[hψ : ∀ (i : n), fact (ψ i).is_faithful_pos_map]
(r₁ r₂ : ℝ)
(A : (Π (i : n), matrix (s i) (s i) ℂ) →ₗ[ℂ] Π (i : n), matrix (s i) (s i) ℂ) :
⇑(module.dual.pi.is_faithful_pos_map.Psi hψ r₁ r₂) (⇑(linear_equiv.symm_map ℂ (Π (i : n), matrix (s i) (s i) ℂ)) A) = ⇑(tensor_product.map (module.dual.pi.is_faithful_pos_map.sig hψ (r₁ + r₂ - 1)).to_linear_map (op.comp ((module.dual.pi.is_faithful_pos_map.sig hψ (-r₁ - r₂)).to_linear_map.comp unop))) (⇑ten_swap (⇑(module.dual.pi.is_faithful_pos_map.Psi hψ r₁ r₂) A))
theorem
Psi.symm_map_symm_apply
{n : Type u_1}
[fintype n]
[decidable_eq n]
{s : n → Type u_2}
[Π (i : n), fintype (s i)]
[Π (i : n), decidable_eq (s i)]
{ψ : Π (i : n), module.dual ℂ (matrix (s i) (s i) ℂ)}
[hψ : ∀ (i : n), fact (ψ i).is_faithful_pos_map]
(r₁ r₂ : ℝ)
(A : (Π (i : n), matrix (s i) (s i) ℂ) →ₗ[ℂ] Π (i : n), matrix (s i) (s i) ℂ) :
⇑(module.dual.pi.is_faithful_pos_map.Psi hψ r₁ r₂) (⇑((linear_equiv.symm_map ℂ (Π (i : n), matrix (s i) (s i) ℂ)).symm) A) = ⇑(tensor_product.map (module.dual.pi.is_faithful_pos_map.sig hψ (r₁ + r₂)).to_linear_map (op.comp ((module.dual.pi.is_faithful_pos_map.sig hψ (1 - r₁ - r₂)).to_linear_map.comp unop))) (⇑ten_swap (⇑(module.dual.pi.is_faithful_pos_map.Psi hψ r₁ r₂) A))