Some stuff on star algebra equivalences #
This file contains some obvious definitions and lemmas on star algebra equivalences.
def
star_alg_equiv.of_alg_equiv
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[comm_semiring R]
[semiring A]
[semiring B]
[algebra R A]
[algebra R B]
[has_star A]
[has_star B]
(f : A ≃ₐ[R] B)
(hf : ∀ (x : A), ⇑f (has_star.star x) = has_star.star (⇑f x)) :
@[simp]
theorem
star_alg_equiv.of_alg_equiv_coe
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[comm_semiring R]
[semiring A]
[semiring B]
[algebra R A]
[algebra R B]
[has_star A]
[has_star B]
(f : A ≃ₐ[R] B)
(hf : ∀ (x : A), ⇑f (has_star.star x) = has_star.star (⇑f x)) :
⇑(star_alg_equiv.of_alg_equiv f hf) = ⇑f
@[simp]
theorem
star_alg_equiv.of_alg_equiv_symm_coe
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[comm_semiring R]
[semiring A]
[semiring B]
[algebra R A]
[algebra R B]
[has_star A]
[has_star B]
(f : A ≃ₐ[R] B)
(hf : ∀ (x : A), ⇑f (has_star.star x) = has_star.star (⇑f x)) :
theorem
star_alg_equiv.comp_eq_iff
{R : Type u_1}
{E₁ : Type u_2}
{E₂ : Type u_3}
{E₃ : Type u_4}
[comm_semiring R]
[semiring E₁]
[semiring E₂]
[add_comm_group E₃]
[algebra R E₁]
[algebra R E₂]
[module R E₃]
[has_star E₁]
[has_star E₂]
(f : E₁ ≃⋆ₐ[R] E₂)
(x : E₂ →ₗ[R] E₃)
(y : E₁ →ₗ[R] E₃) :
x.comp f.to_alg_equiv.to_linear_map = y ↔ x = y.comp f.symm.to_alg_equiv.to_linear_map
theorem
alg_equiv.one_to_linear_map
{R : Type u_1}
{E : Type u_2}
[comm_semiring R]
[semiring E]
[algebra R E] :
1.to_linear_map = 1
theorem
is_idempotent_elem.mul_equiv
{H₁ : Type u_1}
{H₂ : Type u_2}
[semiring H₁]
[semiring H₂]
(f : H₁ ≃* H₂)
(x : H₁) :
is_idempotent_elem (⇑f x) ↔ is_idempotent_elem x
theorem
is_idempotent_elem.alg_equiv
{R : Type u_1}
{H₁ : Type u_2}
{H₂ : Type u_3}
[comm_semiring R]
[semiring H₁]
[semiring H₂]
[algebra R H₁]
[algebra R H₂]
(f : H₁ ≃ₐ[R] H₂)
(x : H₁) :
is_idempotent_elem (⇑f x) ↔ is_idempotent_elem x
theorem
is_idempotent_elem.star_alg_equiv
{R : Type u_1}
{H₁ : Type u_2}
{H₂ : Type u_3}
[comm_semiring R]
[semiring H₁]
[semiring H₂]
[algebra R H₁]
[algebra R H₂]
[has_star H₁]
[has_star H₂]
(f : H₁ ≃⋆ₐ[R] H₂)
(x : H₁) :
is_idempotent_elem (⇑f x) ↔ is_idempotent_elem x