mathlib3 documentation

monlib / preq.star_alg_equiv

Some stuff on star algebra equivalences #

This file contains some obvious definitions and lemmas on star algebra equivalences.

theorem alg_equiv.comp_inj {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [comm_semiring R] [semiring A] [semiring B] [semiring C] [algebra R A] [algebra R B] [algebra R C] (f : B ≃ₐ[R] C) (S T : A →ₗ[R] B) :
theorem alg_equiv.inj_comp {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [comm_semiring R] [semiring A] [semiring B] [semiring C] [algebra R A] [algebra R B] [algebra R C] (f : C ≃ₐ[R] A) (S T : A →ₗ[R] B) :
def star_alg_equiv.to_alg_equiv {R : Type u_1} {A : Type u_2} {B : Type u_3} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] [has_star A] [has_star B] (f : A ≃⋆ₐ[R] B) :
Equations
@[simp]
theorem star_alg_equiv.coe_to_alg_equiv {R : Type u_1} {A : Type u_2} {B : Type u_3} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] [has_star A] [has_star B] (f : A ≃⋆ₐ[R] B) :
theorem star_alg_equiv.symm_apply_eq {R : Type u_1} {A : Type u_2} {B : Type u_3} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] [has_star A] [has_star B] (f : A ≃⋆ₐ[R] B) (x : A) (y : B) :
(f.symm) y = x y = f x
def star_alg_equiv.of_alg_equiv {R : Type u_1} {A : Type u_2} {B : Type u_3} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] [has_star A] [has_star B] (f : A ≃ₐ[R] B) (hf : (x : A), f (has_star.star x) = has_star.star (f x)) :
Equations
@[simp]
theorem star_alg_equiv.of_alg_equiv_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] [has_star A] [has_star B] (f : A ≃ₐ[R] B) (hf : (x : A), f (has_star.star x) = has_star.star (f x)) :
@[simp]
theorem star_alg_equiv.of_alg_equiv_symm_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] [has_star A] [has_star B] (f : A ≃ₐ[R] B) (hf : (x : A), f (has_star.star x) = has_star.star (f x)) :
theorem star_alg_equiv.comp_eq_iff {R : Type u_1} {E₁ : Type u_2} {E₂ : Type u_3} {E₃ : Type u_4} [comm_semiring R] [semiring E₁] [semiring E₂] [add_comm_group E₃] [algebra R E₁] [algebra R E₂] [module R E₃] [has_star E₁] [has_star E₂] (f : E₁ ≃⋆ₐ[R] E₂) (x : E₂ →ₗ[R] E₃) (y : E₁ →ₗ[R] E₃) :
theorem alg_equiv.one_to_linear_map {R : Type u_1} {E : Type u_2} [comm_semiring R] [semiring E] [algebra R E] :
theorem alg_equiv.map_eq_zero_iff {R : Type u_1} {E₁ : Type u_2} {E₂ : Type u_3} [comm_semiring R] [semiring E₁] [semiring E₂] [algebra R E₁] [algebra R E₂] (f : E₁ ≃ₐ[R] E₂) (x : E₁) :
f x = 0 x = 0
theorem star_alg_equiv.map_eq_zero_iff {R : Type u_1} {E₁ : Type u_2} {E₂ : Type u_3} [comm_semiring R] [semiring E₁] [semiring E₂] [algebra R E₁] [algebra R E₂] [has_star E₁] [has_star E₂] (f : E₁ ≃⋆ₐ[R] E₂) (x : E₁) :
f x = 0 x = 0
theorem is_idempotent_elem.mul_equiv {H₁ : Type u_1} {H₂ : Type u_2} [semiring H₁] [semiring H₂] (f : H₁ ≃* H₂) (x : H₁) :
theorem is_idempotent_elem.alg_equiv {R : Type u_1} {H₁ : Type u_2} {H₂ : Type u_3} [comm_semiring R] [semiring H₁] [semiring H₂] [algebra R H₁] [algebra R H₂] (f : H₁ ≃ₐ[R] H₂) (x : H₁) :
theorem is_idempotent_elem.star_alg_equiv {R : Type u_1} {H₁ : Type u_2} {H₂ : Type u_3} [comm_semiring R] [semiring H₁] [semiring H₂] [algebra R H₁] [algebra R H₂] [has_star H₁] [has_star H₂] (f : H₁ ≃⋆ₐ[R] H₂) (x : H₁) :
theorem star_alg_equiv.injective {R : Type u_1} {α : Type u_2} {β : Type u_3} [comm_semiring R] [semiring α] [semiring β] [algebra R α] [algebra R β] [has_star α] [has_star β] (f : α ≃⋆ₐ[R] β) :
theorem alg_equiv.eq_apply_iff_symm_eq {R : Type u_1} {A : Type u_2} {B : Type u_3} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] (f : A ≃ₐ[R] B) {a : B} {b : A} :
a = f b (f.symm) a = b
theorem star_alg_equiv.eq_apply_iff_symm_eq {R : Type u_1} {A : Type u_2} {B : Type u_3} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] [has_star A] [has_star B] (f : A ≃⋆ₐ[R] B) {a : B} {b : A} :
a = f b (f.symm) a = b