mathlib3 documentation

monlib / quantum_graph.to_projections

Quantum graphs as projections #

This file contains the definition of a quantum graph as a projection, and the proof that the

theorem linear_equiv.coe_one {R : Type u_1} [semiring R] (M : Type u_2) [add_comm_monoid M] [module R M] :
1 = 1
theorem matrix.conj_conj_transpose' {R : Type u_1} {n₁ : Type u_2} {n₂ : Type u_3} [has_involutive_star R] (A : matrix n₁ n₂ R) :
theorem to_matrix_mul_left_mul_right_adjoint {p : Type u_1} [fintype p] [decidable_eq p] {n : p Type u_2} [Π (i : p), fintype (n i)] [Π (i : p), decidable_eq (n i)] {φ : Π (i : p), module.dual (matrix (n i) (n i) )} (hφ : (i : p), fact (φ i).is_faithful_pos_map) (x y : Π (i : p), matrix (n i) (n i) ) :
def pi.linear_map.apply {ι₁ : Type u_1} {ι₂ : Type u_2} {E₁ : ι₁ Type u_3} [decidable_eq ι₁] [fintype ι₁] [Π (i : ι₁), add_comm_monoid (E₁ i)] [Π (i : ι₁), module (E₁ i)] {E₂ : ι₂ Type u_4} [Π (i : ι₂), add_comm_monoid (E₂ i)] [Π (i : ι₂), module (E₂ i)] (i : ι₁) (j : ι₂) :
((Π (a : ι₁), E₁ a) →ₗ[] Π (a : ι₂), E₂ a) →ₗ[] E₁ i →ₗ[] E₂ j
Equations
@[simp]
theorem pi.linear_map.apply_apply_apply {ι₁ : Type u_1} {ι₂ : Type u_2} {E₁ : ι₁ Type u_3} [decidable_eq ι₁] [fintype ι₁] [Π (i : ι₁), add_comm_monoid (E₁ i)] [Π (i : ι₁), module (E₁ i)] {E₂ : ι₂ Type u_4} [Π (i : ι₂), add_comm_monoid (E₂ i)] [Π (i : ι₂), module (E₂ i)] (i : ι₁) (j : ι₂) (x : (Π (a : ι₁), E₁ a) →ₗ[] Π (a : ι₂), E₂ a) (a : E₁ i) :
theorem matrix.conj_eq_transpose_conj_transpose {R : Type u_1} {n₁ : Type u_2} {n₂ : Type u_3} [has_star R] (A : matrix n₁ n₂ R) :
theorem matrix.conj_eq_conj_transpose_transpose {R : Type u_1} {n₁ : Type u_2} {n₂ : Type u_3} [has_star R] (A : matrix n₁ n₂ R) :
noncomputable def qam.submodule_of_idempotent_and_real {p : Type u_1} [fintype p] [decidable_eq p] {φ : module.dual (matrix p p )} [hφ : fact φ.is_faithful_pos_map] {A : matrix p p →ₗ[] matrix p p } (hA1 : ((qam.refl_idempotent qam.submodule_of_idempotent_and_real._proof_1) A) A = A) (hA2 : A.is_real) :
Equations
def real_qam {p : Type u_1} [fintype p] [decidable_eq p] {φ : module.dual (matrix p p )} (hφ : φ.is_faithful_pos_map) (A : matrix p p →ₗ[] matrix p p ) :
Prop
Equations
theorem real_qam.add_iff {p : Type u_1} [fintype p] [decidable_eq p] {φ : module.dual (matrix p p )} [hφ : fact φ.is_faithful_pos_map] {A B : matrix p p →ₗ[] matrix p p } (hA : real_qam _ A) (hB : real_qam _ B) :
def real_qam.zero {p : Type u_1} [fintype p] [decidable_eq p] {φ : module.dual (matrix p p )} [hφ : fact φ.is_faithful_pos_map] :
@[instance]
noncomputable def real_qam.has_zero {p : Type u_1} [fintype p] [decidable_eq p] {φ : module.dual (matrix p p )} [hφ : fact φ.is_faithful_pos_map] :
has_zero {x // real_qam real_qam.has_zero._proof_1 x}
Equations
noncomputable def real_qam.edges {p : Type u_1} [fintype p] [decidable_eq p] {φ : module.dual (matrix p p )} [hφ : fact φ.is_faithful_pos_map] {x : matrix p p →ₗ[] matrix p p } (hx : real_qam real_qam.edges._proof_1 x) :
Equations
noncomputable def real_qam.edges' {p : Type u_1} [fintype p] [decidable_eq p] {φ : module.dual (matrix p p )} [hφ : fact φ.is_faithful_pos_map] :
{x // real_qam real_qam.edges'._proof_1 x}
Equations
theorem real_qam.edges_eq {p : Type u_1} [fintype p] [decidable_eq p] {φ : module.dual (matrix p p )} [hφ : fact φ.is_faithful_pos_map] {A : matrix p p →ₗ[] matrix p p } (hA : real_qam _ A) :
theorem real_qam.edges_eq_zero_iff {p : Type u_1} [fintype p] [decidable_eq p] {φ : module.dual (matrix p p )} [hφ : fact φ.is_faithful_pos_map] {A : matrix p p →ₗ[] matrix p p } (hA : real_qam _ A) :
hA.edges = 0 A = 0
theorem Psi_apply_complete_graph {p : Type u_1} [fintype p] [decidable_eq p] {φ : module.dual (matrix p p )} [hφ : fact φ.is_faithful_pos_map] {t s : } :
(_.Psi t s) (rank_one 1 1) = 1