Quantum Set #
This file defines the structure of a quantum set.
A quantum set is defined as a star-algebra A
over ℂ
with a positive element Q
such that
Q
is invertible and a sum of rank-one operators (in other words, positive definite).
The quantum set is also equipped with a faithful positive linear functional φ
on A
,
which is used to define the inner product on A
, i.e., ⟪x, y⟫_ℂ = φ (star x * y)
.
The quantum set is also equipped with a trace
functional on A
such that φ x = trace (Q * x)
.
Main definitions #
quantum_set A
is a structure that defines a quantum set.quantum_set.mod_aut A t
defines the modular automorphism of a quantum set, which is a family of automorphisms ofA
parameterized byt : ℝ
, given byx ↦ Q^(-t) * x * Q^t
, whereQ
is the unique positive definite element inA
given by the quantum set structure.
@[class]
- to_normed_add_comm_group_of_ring : normed_add_comm_group_of_ring A
- to_inner_product_space : inner_product_space ℂ A
- to_partial_order : partial_order A
- to_star_ordered_ring : star_ordered_ring A
- to_has_smul_comm_class : smul_comm_class ℂ A A
- to_is_scalar_tower : is_scalar_tower ℂ A A
- to_finite_dimensional : finite_dimensional ℂ A
- to_has_inv : has_inv A
- φ : module.dual ℂ A
- hφ : quantum_set.φ.is_faithful_pos_map
- inner_eq : ∀ (x y : A), has_inner.inner x y = ⇑quantum_set.φ (has_star.star x * y)
- functional_adjoint_eq : let _inst : algebra ℂ A := algebra.of_is_scalar_tower_smul_comm_class in ⇑linear_map.adjoint quantum_set.φ = ↑(algebra.linear_map ℂ A)
- A_pos : Type ?
- A_pos_has_pow : has_pow {x // 0 < x} ℝ
- A_pos_has_inv : has_inv {x // 0 < x}
- A_pos_pow_mul : ∀ (x : {x // 0 < x}) (t s : ℝ), ↑(x ^ t) * ↑(x ^ s) = ↑(x ^ (t + s))
- A_pos_pow_zero : ∀ (x : {x // 0 < x}), ↑(x ^ 0) = 1
- A_pos_pow_one : ∀ (x : {x // 0 < x}), x ^ 1 = x
- A_pos_pow_neg : ∀ (x : {x // 0 < x}) (t : ℝ), x ^ -t = (x ^ t)⁻¹
- A_pos_inv_coe : ∀ (x : {x // 0 < x}), (↑x)⁻¹ = ↑x⁻¹
- Q : {x // 0 < x}
- trace : module.dual ℂ A
- trace_is_tracial : quantum_set.trace.is_tracial
- functional_eq : ∀ (x : A), ⇑quantum_set.φ x = ⇑quantum_set.trace (↑quantum_set.Q * x)
Instances for quantum_set
- quantum_set.has_sizeof_inst
@[simp]
theorem
quantum_set.mod_aut_apply
(A : Type u_1)
[quantum_set A]
(t : ℝ)
(x : A) :
⇑(quantum_set.mod_aut A t) x = ↑(quantum_set.Q ^ -t) * x * ↑(quantum_set.Q ^ t)
@[simp]
theorem
quantum_set.mod_aut_symm_apply
(A : Type u_1)
[quantum_set A]
(t : ℝ)
(x : A) :
⇑((quantum_set.mod_aut A t).symm) x = ↑(quantum_set.Q ^ t) * x * ↑(quantum_set.Q ^ -t)
theorem
quantum_set.mod_aut_trans
{A : Type u_1}
[quantum_set A]
(t s : ℝ) :
(quantum_set.mod_aut A t).trans (quantum_set.mod_aut A s) = quantum_set.mod_aut A (t + s)
theorem
quantum_set.mod_aut_neg
{A : Type u_1}
[quantum_set A]
(t : ℝ) :
quantum_set.mod_aut A (-t) = (quantum_set.mod_aut A t).symm