Compact sets #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We define a few types of compact sets in a topological space.
Main Definitions #
For a topological space α
,
compacts α
: The type of compact sets.nonempty_compacts α
: The type of non-empty compact sets.positive_compacts α
: The type of compact sets with non-empty interior.compact_opens α
: The type of compact open sets. This is a central object in the study of spectral spaces.
Compact sets #
- carrier : set α
- is_compact' : is_compact self.carrier
The type of compact sets of a topological space.
Instances for topological_space.compacts
- topological_space.compacts.has_sizeof_inst
- topological_space.compacts.set_like
- topological_space.compacts.is_compact.can_lift
- topological_space.compacts.has_sup
- topological_space.compacts.has_inf
- topological_space.compacts.has_top
- topological_space.compacts.has_bot
- topological_space.compacts.semilattice_sup
- topological_space.compacts.distrib_lattice
- topological_space.compacts.order_bot
- topological_space.compacts.bounded_order
- topological_space.compacts.inhabited
Equations
- topological_space.compacts.set_like = {coe := topological_space.compacts.carrier _inst_1, coe_injective' := _}
Equations
Equations
- topological_space.compacts.has_sup = {sup := λ (s t : topological_space.compacts α), {carrier := ↑s ∪ ↑t, is_compact' := _}}
Equations
- topological_space.compacts.has_inf = {inf := λ (s t : topological_space.compacts α), {carrier := ↑s ∩ ↑t, is_compact' := _}}
Equations
- topological_space.compacts.has_top = {top := {carrier := set.univ α, is_compact' := _}}
Equations
- topological_space.compacts.has_bot = {bot := {carrier := ∅, is_compact' := _}}
Equations
- topological_space.compacts.semilattice_sup = function.injective.semilattice_sup coe topological_space.compacts.semilattice_sup._proof_1 topological_space.compacts.semilattice_sup._proof_2
Equations
- topological_space.compacts.distrib_lattice = function.injective.distrib_lattice coe topological_space.compacts.distrib_lattice._proof_1 topological_space.compacts.distrib_lattice._proof_2 topological_space.compacts.distrib_lattice._proof_3
Equations
- topological_space.compacts.order_bot = order_bot.lift coe topological_space.compacts.order_bot._proof_1 topological_space.compacts.order_bot._proof_2
Equations
- topological_space.compacts.bounded_order = bounded_order.lift coe topological_space.compacts.bounded_order._proof_1 topological_space.compacts.bounded_order._proof_2 topological_space.compacts.bounded_order._proof_3
The type of compact sets is inhabited, with default element the empty set.
Equations
The image of a compact set under a continuous function.
Equations
- topological_space.compacts.map f hf K = {carrier := f '' K.carrier, is_compact' := _}
A homeomorphism induces an equivalence on compact sets, by taking the image.
Equations
- topological_space.compacts.equiv f = {to_fun := topological_space.compacts.map ⇑f _, inv_fun := topological_space.compacts.map ⇑(f.symm) _, left_inv := _, right_inv := _}
The image of a compact set under a homeomorphism can also be expressed as a preimage.
The product of two compacts
, as a compacts
in the product space.
Nonempty compact sets #
- to_compacts : topological_space.compacts α
- nonempty' : self.to_compacts.carrier.nonempty
The type of nonempty compact sets of a topological space.
Instances for topological_space.nonempty_compacts
- topological_space.nonempty_compacts.has_sizeof_inst
- topological_space.nonempty_compacts.set_like
- topological_space.nonempty_compacts.has_sup
- topological_space.nonempty_compacts.has_top
- topological_space.nonempty_compacts.semilattice_sup
- topological_space.nonempty_compacts.order_top
- topological_space.nonempty_compacts.inhabited
Equations
- topological_space.nonempty_compacts.set_like = {coe := λ (s : topological_space.nonempty_compacts α), s.to_compacts.carrier, coe_injective' := _}
Reinterpret a nonempty compact as a closed set.
Equations
- topological_space.nonempty_compacts.has_sup = {sup := λ (s t : topological_space.nonempty_compacts α), {to_compacts := s.to_compacts ⊔ t.to_compacts, nonempty' := _}}
Equations
- topological_space.nonempty_compacts.has_top = {top := {to_compacts := ⊤, nonempty' := _}}
Equations
- topological_space.nonempty_compacts.semilattice_sup = function.injective.semilattice_sup coe topological_space.nonempty_compacts.semilattice_sup._proof_1 topological_space.nonempty_compacts.semilattice_sup._proof_2
Equations
- topological_space.nonempty_compacts.order_top = order_top.lift coe topological_space.nonempty_compacts.order_top._proof_1 topological_space.nonempty_compacts.order_top._proof_2
In an inhabited space, the type of nonempty compact subsets is also inhabited, with default element the singleton set containing the default element.
Equations
- topological_space.nonempty_compacts.inhabited = {default := {to_compacts := {carrier := {inhabited.default}, is_compact' := _}, nonempty' := _}}
The product of two nonempty_compacts
, as a nonempty_compacts
in the product space.
Equations
- K.prod L = {to_compacts := {carrier := (K.to_compacts.prod L.to_compacts).carrier, is_compact' := _}, nonempty' := _}
Positive compact sets #
- to_compacts : topological_space.compacts α
- interior_nonempty' : (interior self.to_compacts.carrier).nonempty
The type of compact sets with nonempty interior of a topological space.
See also compacts
and nonempty_compacts
.
Instances for topological_space.positive_compacts
- topological_space.positive_compacts.has_sizeof_inst
- topological_space.positive_compacts.set_like
- topological_space.positive_compacts.has_sup
- topological_space.positive_compacts.has_top
- topological_space.positive_compacts.semilattice_sup
- topological_space.positive_compacts.order_top
- topological_space.positive_compacts.inhabited
- topological_space.positive_compacts.nonempty'
Equations
- topological_space.positive_compacts.set_like = {coe := λ (s : topological_space.positive_compacts α), s.to_compacts.carrier, coe_injective' := _}
Reinterpret a positive compact as a nonempty compact.
Equations
- s.to_nonempty_compacts = {to_compacts := s.to_compacts, nonempty' := _}
Equations
- topological_space.positive_compacts.has_sup = {sup := λ (s t : topological_space.positive_compacts α), {to_compacts := s.to_compacts ⊔ t.to_compacts, interior_nonempty' := _}}
Equations
Equations
- topological_space.positive_compacts.semilattice_sup = function.injective.semilattice_sup coe topological_space.positive_compacts.semilattice_sup._proof_1 topological_space.positive_compacts.semilattice_sup._proof_2
Equations
- topological_space.positive_compacts.order_top = order_top.lift coe topological_space.positive_compacts.order_top._proof_1 topological_space.positive_compacts.order_top._proof_2
The image of a positive compact set under a continuous open map.
Equations
- topological_space.positive_compacts.map f hf hf' K = {to_compacts := {carrier := (topological_space.compacts.map f hf K.to_compacts).carrier, is_compact' := _}, interior_nonempty' := _}
Equations
In a nonempty locally compact space, there exists a compact set with nonempty interior.
The product of two positive_compacts
, as a positive_compacts
in the product space.
Equations
- K.prod L = {to_compacts := {carrier := (K.to_compacts.prod L.to_compacts).carrier, is_compact' := _}, interior_nonempty' := _}
Compact open sets #
- to_compacts : topological_space.compacts α
- is_open' : is_open self.to_compacts.carrier
The type of compact open sets of a topological space. This is useful in non Hausdorff contexts, in particular spectral spaces.
Instances for topological_space.compact_opens
- topological_space.compact_opens.has_sizeof_inst
- topological_space.compact_opens.set_like
- topological_space.compact_opens.has_sup
- topological_space.compact_opens.has_inf
- topological_space.compact_opens.semilattice_inf
- topological_space.compact_opens.has_top
- topological_space.compact_opens.has_bot
- topological_space.compact_opens.has_sdiff
- topological_space.compact_opens.has_compl
- topological_space.compact_opens.semilattice_sup
- topological_space.compact_opens.order_bot
- topological_space.compact_opens.generalized_boolean_algebra
- topological_space.compact_opens.bounded_order
- topological_space.compact_opens.boolean_algebra
- topological_space.compact_opens.inhabited
Equations
- topological_space.compact_opens.set_like = {coe := λ (s : topological_space.compact_opens α), s.to_compacts.carrier, coe_injective' := _}
Reinterpret a compact open as an open.
Reinterpret a compact open as a clopen.
Equations
- topological_space.compact_opens.has_sup = {sup := λ (s t : topological_space.compact_opens α), {to_compacts := s.to_compacts ⊔ t.to_compacts, is_open' := _}}
Equations
- topological_space.compact_opens.has_inf = {inf := λ (U V : topological_space.compact_opens α), {to_compacts := {carrier := ↑U ∩ ↑V, is_compact' := _}, is_open' := _}}
Equations
- topological_space.compact_opens.semilattice_inf = function.injective.semilattice_inf coe topological_space.compact_opens.semilattice_inf._proof_1 topological_space.compact_opens.semilattice_inf._proof_2
Equations
- topological_space.compact_opens.has_top = {top := {to_compacts := ⊤, is_open' := _}}
Equations
- topological_space.compact_opens.has_bot = {bot := {to_compacts := ⊥, is_open' := _}}
Equations
- topological_space.compact_opens.has_sdiff = {sdiff := λ (s t : topological_space.compact_opens α), {to_compacts := {carrier := ↑s \ ↑t, is_compact' := _}, is_open' := _}}
Equations
- topological_space.compact_opens.has_compl = {compl := λ (s : topological_space.compact_opens α), {to_compacts := {carrier := (↑s)ᶜ, is_compact' := _}, is_open' := _}}
Equations
- topological_space.compact_opens.semilattice_sup = function.injective.semilattice_sup coe topological_space.compact_opens.semilattice_sup._proof_1 topological_space.compact_opens.semilattice_sup._proof_2
Equations
- topological_space.compact_opens.order_bot = order_bot.lift coe topological_space.compact_opens.order_bot._proof_1 topological_space.compact_opens.order_bot._proof_2
Equations
- topological_space.compact_opens.generalized_boolean_algebra = function.injective.generalized_boolean_algebra coe topological_space.compact_opens.generalized_boolean_algebra._proof_1 topological_space.compact_opens.generalized_boolean_algebra._proof_2 topological_space.compact_opens.generalized_boolean_algebra._proof_3 topological_space.compact_opens.generalized_boolean_algebra._proof_4 topological_space.compact_opens.generalized_boolean_algebra._proof_5
Equations
- topological_space.compact_opens.bounded_order = bounded_order.lift coe topological_space.compact_opens.bounded_order._proof_1 topological_space.compact_opens.bounded_order._proof_2 topological_space.compact_opens.bounded_order._proof_3
Equations
- topological_space.compact_opens.boolean_algebra = function.injective.boolean_algebra coe topological_space.compact_opens.boolean_algebra._proof_1 topological_space.compact_opens.boolean_algebra._proof_2 topological_space.compact_opens.boolean_algebra._proof_3 topological_space.compact_opens.boolean_algebra._proof_4 topological_space.compact_opens.boolean_algebra._proof_5 topological_space.compact_opens.boolean_algebra._proof_6 topological_space.compact_opens.boolean_algebra._proof_7
Equations
The image of a compact open under a continuous open map.
Equations
- topological_space.compact_opens.map f hf hf' s = {to_compacts := topological_space.compacts.map f hf s.to_compacts, is_open' := _}
The product of two compact_opens
, as a compact_opens
in the product space.
Equations
- K.prod L = {to_compacts := {carrier := (K.to_compacts.prod L.to_compacts).carrier, is_compact' := _}, is_open' := _}