mathlib3 documentation

monlib / linear_algebra.is_proj'

is_proj' #

This file contains the definition of linear_map.is_proj' and lemmas relating to it, which is essentially linear_map.is_proj but as a linear map from E to ↥U.

def is_proj' {R : Type u_1} {E : Type u_2} [ring R] [add_comm_group E] [module R E] {U : submodule R E} {p : E →ₗ[R] E} (hp : linear_map.is_proj U p) :

linear_map.is_proj but as a linear map from E to ↥U

Equations
theorem is_proj'_apply {R : Type u_1} {E : Type u_2} [ring R] [add_comm_group E] [module R E] {U : submodule R E} {p : E →ₗ[R] E} (hp : linear_map.is_proj U p) (x : E) :
((is_proj' hp) x) = p x
theorem is_proj'_eq {R : Type u_1} {E : Type u_2} [ring R] [add_comm_group E] [module R E] {U : submodule R E} {p : E →ₗ[R] E} (hp : linear_map.is_proj U p) (x : U) :
(is_proj' hp) x = x
noncomputable def orthogonal_projection' {E : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [normed_add_comm_group E] [inner_product_space 𝕜 E] (U : submodule 𝕜 E) [complete_space U] :
E →L[𝕜] E
Equations