mathlib3 documentation

monlib / linear_algebra.mul''

linear_map.mul'' #

this defines the multiplication map $M_{n\times n} \to M_n$

theorem commutes_with_unit_iff {R : Type u_1} {A : Type u_2} {B : Type u_3} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] (f : A →ₗ[R] B) :
theorem commutes_with_mul'_iff {R : Type u_1} {A : Type u_2} {B : Type u_3} [comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] (f : A →ₗ[R] B) :
(linear_map.mul' R B).comp (tensor_product.map f f) = f.comp (linear_map.mul' R A) (x y : A), f (x * y) = f x * f y
theorem matrix.kronecker_product.ext_iff {R : Type u_1} {P : Type u_2} {n₁ : Type u_3} {n₂ : Type u_4} [fintype n₁] [fintype n₂] [comm_semiring R] [add_comm_monoid P] [module R P] [decidable_eq n₁] [decidable_eq n₂] {g h : matrix (n₁ × n₂) (n₁ × n₂) R →ₗ[R] P} :
g = h (x : matrix n₁ n₁ R) (y : matrix n₂ n₂ R), g (matrix.kronecker_map has_mul.mul x y) = h (matrix.kronecker_map has_mul.mul x y)
def linear_map.mul_to_clm (𝕜 : Type u_1) (X : Type (max u_2 u_3)) [is_R_or_C 𝕜] [normed_add_comm_group_of_ring X] [normed_space 𝕜 X] [smul_comm_class 𝕜 X X] [is_scalar_tower 𝕜 X X] [finite_dimensional 𝕜 X] :
X →L[𝕜] X →L[𝕜] X
Equations
theorem linear_map.mul_to_clm_apply {𝕜 : Type u_1} {X : Type (max u_2 u_3)} [is_R_or_C 𝕜] [normed_add_comm_group_of_ring X] [normed_space 𝕜 X] [smul_comm_class 𝕜 X X] [is_scalar_tower 𝕜 X X] [finite_dimensional 𝕜 X] (x y : X) :
((linear_map.mul_to_clm 𝕜 X) x) y = x * y